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Abstract

The oscillation of solutions of f ′′ + Af = 0 is discussed by focusing on four
separate situations. In the complex case A is assumed to be either analytic
in the unit disc D or entire, while in the real case A is continuous either on
(−1, 1) or on (0,∞). In all situations A is expected to grow beyond bounds
that ensure finite oscillation for all (non-trivial) solutions, and the separation
between distinct zeros of solutions is considered.

In the complex case, it is shown that the growth of the maximum modulus
of A determines the minimal separation of zeros of all solutions, and vice versa.
This gives rise to new concepts called zero separation exponents, which measure
the separation of zeros of either all solutions or of individual analytic functions.
In D these quantities are defined in terms of the hyperbolic distance, while in the
complex plane the Euclidean distance is used. As a by-product of these findings,
the 1955-result of B. Schwarz, which asserts that supz∈D |A(z)|(1 − |z|2)2 < ∞
if and only if the zero-sequences of all solutions are separated in the hyperbolic
sense, is rediscovered. The striking plane analogue established reveals that
the Euclidean distance between all distinct zeros of every solution is uniformly
bounded away from zero if and only if A is a constant. As an outgrowth of
the results, new information on the zero distribution of solutions in the classical
polynomial coefficient case is also obtained. The main results are proved by
using a method of localization, which naturally induces characterizations of
certain subclasses of locally univalent functions in terms of the growth of their
pre-Schwarzian and Schwarzian derivatives.

In the real case, it is shown that the separation of zeros of non-trivial solu-
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tions is restricted according to the growth of A, but not conversely.
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1. Introduction

The purpose of this paper is to offer a unified and consistent discussion on
the oscillation of solutions of the linear differential equation

f ′′ +Af = 0 (1.1)

in different situations. The methods employed here give a new approach to this
classical topic. In the real case, A = A(x) is assumed to be continuous either
on a finite open interval or on a half-bounded interval. In the complex case,
A = A(z) is analytic either in the open unit disc D or in the whole complex
plane C. Under these assumptions all zeros of all non-trivial solutions of (1.1)
are simple. The treatment that follows produces estimates for the separation of
zeros of non-trivial solutions in terms of the growth of the coefficient, whenever
the coefficient grows sufficiently fast permitting infinite oscillation for non-trivial
solutions. In the instance of complex differential equations the converse problem
is also addressed. It turns out that lower bounds for the separation of zeros
induce growth restrictions to the coefficient. Therefore, in particular, a one-to-
one correspondence between the separation of zeros of solutions and the growth
of the maximum modulus of the coefficient is obtained. The proofs of the main
results rest upon a method of localization providing with an effective tool that
takes full advantage of classical results due to Kraus, Nehari and Sturm, which
are the foundation of this study. The results and classifications obtained are
discussed by means of several non-trivial examples that also illustrate the variety
of different phenomena, with regard to the distribution of zeros of solutions, that
may occur.

Our motivation originates from the Euler differential equation

f ′′ +
c

x2
f = 0, x ∈ (0,∞). (1.2)

By [30, p. 20] it is known that, if c ≤ 1/4, then (1.2) is disconjugate, which
means that every non-trivial solution vanishes at most once. If c > 1/4, then all
solutions have infinitely many zeros by Sturm’s theorem on interlacing zeros, see
[5, Chapter 2]. In fact, the fine line between disconjugacy and infinite oscillation
can be refined by means of logarithmic terms, see [30, p. 20]. The differential
equation

f ′′ +
c

(1− x2)2
f = 0, x ∈ (−1, 1), (1.3)
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is an analogue of (1.2) on the interval (−1, 1), see [8, p. 161] and [36, p. 162]. Now
(1.3) is disconjugate for c ≤ 1, and for c > 1 every solution vanishes infinitely
many times. Moreover, the hyperbolic distance between two consecutive zeros
of any non-trivial solution of (1.3) is exactly π/

√
c− 1, which is easily verified

by means of [8, Eq. (2)].
In order to make more refined statements, one is led to consider coefficients

of the form

A(x) =
1 + ε(|x|)
(1− x2)2

, x ∈ (−1, 1),

and to determine the order to which the continuous function ε(r) > 0 must decay
to zero as r → 1− to give distinction between finite and infinite oscillation. By [8,
Theorem 1] this distinction is given by ε(x) = log−2(1− x). Again the constant
coefficient is optimal in the sense that (1.1) becomes oscillatory, i.e., it possesses
a non-trivial solution having infinitely many zeros, if ε(x) = c log−2(1 − x) for
any c > 1. Our intention is to analyze those cases when the coefficient A(x)
grows essentially faster than (1−x2)−2; for example of the type (1−x2)−2−p for
p > 0. Since (1.1) is then oscillatory, it is sensible to determine lower bounds for
the hyperbolic distance between consecutive zeros. These lower bounds tend to
zero near the endpoints of the interval (−1, 1), at rates depending on the growth
of A(x)(1− x2)2 near x = ±1, and hence we consider coefficients satisfying the
growth restriction

A(x) ≤ 1

ψ(|x|)2(1− x2)2
, x ∈ (−1, 1),

where ψ = ψ(r) is a positive function approaching to zero as r → 1−. The uti-
lized techniques are based on localization, and they also render optimal results
for half-bounded intervals, which are modeled by (0,∞).

Considerations in D run parallel to the ones on (−1, 1). For example, if

|A(z)| ≤ 1

(1− |z|2)2
, z ∈ D, (1.4)

then every non-trivial solution of (1.1) vanishes at most once in D. In another
form, this corresponds to the well-known theorem of Z. Nehari [34, Theorem 1],
which provides with a sufficient condition for injectivity of a locally univalent
meromorphic function in D in terms of the growth of its Schwarzian derivative.
If (1.4) holds only in an annulus {z ∈ D : a < |z| < 1} for some a ∈ (0, 1),
then by a result of B. Schwarz [36, Theorem 1] all non-trivial solutions vanish
at most finitely many times in D. A quantitive version of Schwarz’s theorem [9,
Theorem 1] shows that the number of zeros of non-trivial solutions of (1.1) in D
is then at most O (1/(1− a)). As in the real case, infinite oscillation is possible
provided that the numerator in (1.4) is replaced by any constant strictly greater
than 1.

The distinction between finite and infinite oscillation in the complex case is
not as well understood as in the real case. In particular, it is no longer true that

|A(z)| ≤ 1 + log−2(1− |z|)
(1− |z|2)2

, z ∈ D,
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implies finite oscillation for non-trivial solutions of (1.1). In fact, if ε : [0, 1)→
(0,∞) is a continuous function satisfying ε(r)/(1 − r) → ∞, as r → 1−, then
there exists an analytic coefficient A, depending on ε, such that

|A(z)| ≤ 1 + ε(|z|)
(1− |z|2)2

, z ∈ D,

and (1.1) is oscillatory, see [9, Theorem 5]. An important discovery [36, Theo-
rems 3 and 4], also due to B. Schwarz, characterizes the separation of distinct
zeros in terms of the growth of the coefficient in a certain special case. To be
more precise, this neat result states that the distance between distinct zeros
of non-trivial solutions of (1.1) is uniformly bounded away from zero in the
hyperbolic sense if and only if

sup
z∈D
|A(z)|(1− |z|2)2 <∞. (1.5)

For the best possible constant lower bound for the separation of zeros, under
the restriction (1.5), we refer to [26]. Corresponding to the preceding case of
the real interval, we investigate coefficients that satisfy the growth restriction

|A(z)| ≤ 1

ψ(|z|)2(1− |z|2)2
, z ∈ D,

where ψ = ψ(r) decays to zero as r → 1−. The method of localization employed
on the interval (−1, 1) for the real differential equation (1.1) not only provides
with results for the separation of zeros of non-trivial solutions of (1.1) in D with
respect to the hyperbolic metric, but also addresses via Kraus’ theorem [33]
the converse direction resulting growth restrictions for the coefficient A. This
reveals the following new discovery with regards to oscillatory equations: The
growth of the maximum modulus of A determines the minimal separation of
zeros of all solutions, and vice versa. Our main result in the unit disc case is
therefore a true generalization of Schwarz’s characterization.

The counterpart of Nehari’s result in the case of the complex plane is the
trivial condition A ≡ 0. In fact, this condition corresponds to the sole disconju-
gate differential equation (1.1) with an entire coefficient, see Lemma 24 below.
Our analysis on the equation (1.1) with an entire coefficient A 6≡ 0 results in
a one-to-one correspondence between the Euclidean distance between zeros of
non-trivial solutions and the growth of the maximum modulus of A. As an
immediate consequence of the results obtained the following striking analogue
of Schwarz’s characterization [36, Theorems 3 and 4] for the complex plane case
is established: The Euclidean distance between distinct zeros of non-trivial so-
lutions of (1.1) is uniformly bounded away from zero if and only if the entire
coefficient A is a constant. It is worth mentioning that our analysis on the
plane case is based on the same methods that we employ in D, and therefore we
strongly rely on the classical theorems of Nehari and Kraus related to univalent
functions in D.

As a byproduct of our analysis, we end up characterizing certain classes
of locally univalent functions in terms of the growth of their pre-Schwarzian
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and Schwarzian derivatives. These classes generalize so-called locally uniformly
univalent functions, and they are of independent interest.

Finally, we mention that our results regarding the complex case give a new
point of view on the connection between the coefficient and solutions of (1.1). It
is well-known that the three concepts – the growth of the coefficient, the growth
of solutions and the quantity of zeros of solutions – are closely related [23]. In
this regard, our contribution is to introduce the notion of zero separation expo-
nents, which measure the separation of zeros either of all non-trivial solutions
of (1.1) or of individual analytic functions. In D these concepts ΛDE(A) and
Λ(f) are defined in terms of the hyperbolic distance, while in C the correspond-
ing quantities ΥDE(A) and Υ(f) involve the Euclidean distance. Our findings
clearly show that in view of differential equations, the separation of zeros of non-
trivial solutions gives a fourth quantity, which is firmly linked to the previously
found three other quantities.

2. Real intervals

In this section, we study the oscillation of solutions of

f ′′ +A(x)f = 0 (2.1)

on an interval I of the real line, assuming that A(x) is continuous on I. The
standard choices for I are finite intervals and half-bounded intervals. Without
loss of generality, we limit our analysis to (−1, 1) and (0,∞).

2.1. Interval (−1, 1)

Our point of departure is Theorem 1 below, which concerns the hyperbolic
distance between consecutive zeros of solutions of (2.1) on the open interval
(−1, 1). This result is stated in terms of an auxiliary function ψ satisfying the
technical condition (2.2), which is studied in detail in Section 2.3.

Recall that, for any complex numbers z1 and z2 in the unit disc D, the
pseudo-hyperbolic distance %p(z1, z2) and the hyperbolic distance %h(z1, z2) be-
tween z1 and z2 are given by

%p(z1, z2) = |ϕz1(z2)| and %h(z1, z2) =
1

2
log

1 + %p(z1, z2)

1− %p(z1, z2)
,

where ϕa(z) = (a− z)/(1− az). Correspondingly,

∆p(a, r) =
{
z ∈ D : %p(z, a) < r

}
and ∆h(a, r) =

{
z ∈ D : %h(z, a) < r

}
are the pseudo-hyperbolic and the hyperbolic open discs of radius r > 0 centered
at a ∈ D, respectively. We employ the same notation with obvious modifications
also in the real case.
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Theorem 1. Let A be a continuous function in (−1, 1), and let ψ : [0, 1) →
(0, 1) be a non-increasing function such that

K = sup
0≤x<1

ψ(x)

ψ
(
x+ψ(x)
1+xψ(x)

) <∞. (2.2)

If

A(x)
(
ψ(|x|)(1− x2)

)2 ≤M <∞, x ∈ (−1, 1), (2.3)

then the hyperbolic distance between any distinct zeros x1 and x2 of any non-
trivial solution of (2.1) satisfies

%h(x1, x2) ≥ log
1 + ψ(|th(x1,x2)|)

max{K
√
M,1}

1− ψ(|th(x1,x2)|)
max{K

√
M,1}

, (2.4)

where th(x1, x2) is the hyperbolic midpoint of x1 and x2.

Proof. Let {f1, f2} be a solution base of (2.1), and set h = f1/f2. Then the
Schwarzian derivative

Sh =

(
h′′

h′

)′
− 1

2

(
h′′

h′

)2

satisfies Sh = 2A. For a ∈ (−1, 1), set ga(x) = (h ◦ ϕa)
(
ψ(|a|)rx

)
, where

r = min
{

(K
√
M)−1, 1

}
. Then the assumption (2.3) yields

Sga(x)(1− x2)2 = Sh
(
ϕa(ψ(|a|)rx)

) (
ϕ′a(ψ(|a|)rx)

)2 (
ψ(|a|)r

)2
(1− x2)2

≤ 2M

(
ϕ′a
(
ψ(|a|)rx

)
ψ(|a|) (1− x2)(

1−
(
ϕa(ψ(|a|)rx)

)2)
ψ
(
|ϕa(ψ(|a|)rx)|

))2

r2

= 2M

(
1− x2

1−
(
ψ(|a|)rx

)2
)2(

ψ(|a|)
ψ
(
|ϕa(ψ(|a|)rx)|

))2

r2

≤ 2M

 sup
a∈(−1,1)

ψ(|a|)

ψ
(
|a|+ψ(|a|)
1+|a|ψ(|a|)

)
2

r2 ≤ 2

for all x ∈ (−1, 1).
Since v′′+ (1−x2)−2v = 0 has a non-vanishing solution

√
1− x2 on (−1, 1),

every non-trivial solution of u′′ + 1
2Sga(x)u = 0 has at most one zero in (−1, 1)

by Sturm’s comparison theorem [5, Chapter 2]. In particular, this is true for

u(x) =
(f ◦ ϕa)

(
ψ(|a|)rx

)√
ϕ′a
(
ψ(|a|)rx

)
ψ(|a|)r

, x ∈ (−1, 1),
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where f is any non-trivial solution of the equation (2.1). We conclude that every
non-trivial solution f of (2.1) has at most one zero in

∆p

(
a, ψ(|a|)r

)
= ∆h

(
a,

1

2
log

1 + ψ(|a|)r
1− ψ(|a|)r

)
, a ∈ (−1, 1). (2.5)

Assume that f is a non-trivial solution of (2.1) having two distinct zeros
x1 < x2 in (−1, 1), and take a = th(x1, x2). The above argumentation shows
that

%h(x1, x2) ≥ log
1 + ψ(|a|)r
1− ψ(|a|)r

= log
1 + ψ(|th(x1, x2)|)r
1− ψ(|th(x1, x2)|)r

,

for otherwise (2.5) for a = th(x1, x2) would contain two distinct zeros of f . The
claim (2.4) follows by substituting the value of r.

We note that a zero-separation result parallel to Theorem 1, without the
condition (2.2), can be obtained by applying Sturm’s comparison theorem in the
line segments between distinct zeros. For example, if A is a continuous function
in (−1, 1) satisfying (2.3), where ψ : [0, 1)→ (0,

√
M/π) is non-increasing, then

an application of [5, Theorem 8, p. 47] yields

%h(x1, x2) ≥ 1

2
log

1 + 2π ψ(max{|x1|,|x2|})√
M

(√
1+4π2 ψ(max{|x1|,|x2|})2/M+1

)
1− 2π ψ(max{|x1|,|x2|})√

M
(√

1+4π2 ψ(max{|x1|,|x2|})2/M+1
) (2.6)

for all distinct zeros x1 and x2 of every non-trivial solution f of (2.1).
With regard to Theorem 1, it is known that the separation of zeros of non-

trivial solutions of (2.1) does not restrict the growth of the coefficient A. This
follows from [19, Corollary 5, p. 346], which implies that (2.1) is disconjugate

whenever
∫ 1

−1
max{A(x), 0} dx ≤ 2. Therefore, if A is chosen appropriately,

then max|x|≤r A(x) exceeds any pregiven function in growth, while (2.1) is dis-
conjugate.

The following example illustrates Theorem 1. It is useful to notice that, if
x1, x2 ∈ (−1, 1) such that x1 < x2, then the hyperbolic midpoint th(x1, x2) is
given by

th(x1, x2) =
exp

(
%h(x1, x2)

)
(1 + x1)− (1− x1)

exp
(
%h(x1, x2)

)
(1 + x1) + (1− x1)

. (2.7)

Example 2. Consider the differential equation

f ′′ +
1

(1− x)4
f = 0 (2.8)

on the interval (−1, 1). In this case infinite oscillation of non-trivial solutions
occurs only near the point x = 1. A solution base {f1, f2} of (2.8) is given by
means of the functions

f1(x) = (1− x) cos
1

1− x
and f2(x) = (1− x) sin

1

1− x
,
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and hence the zeros xk of f = αf1 + βf2 are the solutions of tan
(
1/(1− xk)

)
=

−β/α. Evidently, xk = 1−(µ+kπ)−1 ∈ (−1, 1), k ∈ Z, for some µ ∈ [−π/2, π/2)
depending on the value −β/α. Direct computation shows that

%h(xk, xk+1) =
1

2
log

(
2µ+ 2π(1 + k)− 1

2µ+ 2πk − 1

)
∼ 1

2k
, k →∞,

where A ∼ B means that A/B → 1 in the limit process in question. If we define
ψ(x) = (1− x)/2, then

(1− x2)2ψ(x)2A(x) =
(1 + x)2

4
≤ 1 = M, x ∈ (−1, 1),

and further,

K = sup
0≤x<1

ψ(x)

ψ
(
x+ψ(x)
1+xψ(x)

) = sup
0≤x<1

(2− x) = 2.

Theorem 1 implies that

%h(xk, xk+1) ≥ log
1 + 1

2ψ
(
th(xk, xk+1)

)
1− 1

2ψ
(
th(xk, xk+1)

) = log

(
T + 3

T + 1

)
∼ 1

2kπ
, k →∞,

where T = 2
√

(2µ+ 2πk − 1)(2µ+ 2π(1 + k)− 1).

The following example generalizes the analysis in Example 2.

Example 3. Suppose that p : (−1, 1)→ (0,∞) is a continuously differentiable
function with a strictly negative derivative, and limx→1− p(x) = 0. Now, the
functions

f1 =
p√
−p′

cos
1

p
and f2 =

p√
−p′

sin
1

p

are linearly independent solutions of (2.1) with A = (p′)2/p4 + (1/2)Sp.
If we choose p(x) = (1− x)α, α > 0, then

A(x) =
α2

(1− x)2+2α
+

1

4

1− α2

(1− x)2
.

If ψ(x) = 2−1(1− x)α, then both the actual distance between consecutive zeros
xk and xk+1, and the estimate from Theorem 1, are asymptotically equal to a
constant multiple of 1/k. We omit the details of these computations.

The last example concerning the interval (−1, 1) deals with damped har-
monic oscillators. Note that the weight functions ψ(x) = exp

(
− (1−x)−1

)
and

ψ(x) = (1 − x)α for α > 0 satisfy the assumption (1 − x2)2ψ(x)2ξ(x) → 0, as
x→ 1−, in Example 4.
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Example 4. Let ψ be a twice continuously differentiable positive function on
(−1, 1), and define

ξ(x) = −1

2

ψ′′(x)

ψ(x)
+

x

1− x2

ψ′(x)

ψ(x)
+

1

4

(
ψ′(x)

ψ(x)

)2

+
1

(1− x2)2
.

If (1 − x2)2ψ(x)2ξ(x) → 0, as x → 1−, then there exists a continuous function
A on (−1, 1) with

A(x) ∼ 1

(1− x2)2ψ(x)2
, x→ 1−, (2.9)

such that (2.1) possesses linearly independent solutions

f1(x) =
√

(1− x2)ψ(x) sin

(∫ x

0

dt

(1− t2)ψ(t)

)
,

f2(x) =
√

(1− x2)ψ(x) cos

(∫ x

0

dt

(1− t2)ψ(t)

)
.

(2.10)

To prove the existence of A with the property (2.9), we argue as follows. Let
F (x) be a positive and twice continuously differentiable function on (−1, 1).
Then the functions

y1(x) = F (x)−1/4 sin

(∫ x

0

F (t)1/2 dt

)
, y2(x) = F (x)−1/4 cos

(∫ x

0

F (t)1/2 dt

)
,

are linearly independent solutions of

y′′ +B(x)y = 0, B(x) = F (x) +
1

4

F ′′(x)

F (x)
− 5

16

(
F ′(x)

F (x)

)2

,

see [28, pp. 478-479]. Choose F (x) = (1 − x2)−2ψ(x)−2. Then the functions
y1 and y2 are respectively equal to the functions f1 and f2 in (2.10). A simple
computation yields B(x) = F (x) + ξ(x). Since ξ(x)/F (x) → 0, as x → 1−, by
assumption, we have B(x) ∼ F (x), as x→ 1−. Note that, if (1− x2)ψ(x)→ 0,
as x→ 1−, then all solutions of (2.1) decay to zero as x→ 1−, no matter how
fast the coefficient grows as x→ 1−.

2.2. Positive real axis

By a suitable Möbius transformation, Theorem 1 can be translated to the
half-bounded interval (0,∞). Note that, if we are interested in the oscillation
of solutions near the infinity, the property Ψ(x) = Ψ( 1

x ) in Theorem 5 is not
needed. As in the case of Theorem 1, the separation of zeros of non-trivial
solutions of (2.1) does not restrict the growth of the coefficient A on (0,∞).

Theorem 5. Let A be a continuous function on the interval (0,∞), and let
Ψ : (0,∞) → (0, 1) be non-increasing on [1,∞) such that Ψ(x) = Ψ( 1

x ) for all
x ∈ (0,∞), and

K = sup
1≤x<∞

Ψ (x)

Ψ
(
x 1+Ψ(x)

1−Ψ(x)

) <∞. (2.11)
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If

A(x)
(
Ψ(x)x

)2 ≤M <∞, x ∈ (0,∞), (2.12)

then the Euclidean distance between any distinct zeros x1 and x2 of any non-
trivial solution of (2.1) satisfies

|x1 − x2| ≥ 2 min
{

(2K
√
M)−1, 1

}
ta(x1, x2)Ψ

(
tg(x1, x2)

)
,

where ta(x1, x2) and tg(x1, x2) are the arithmetic and the geometric mean value
of x1 and x2, respectively.

Proof. Assume that f is a non-trivial solution of (2.1) having two zeros 0 <

x1 < x2 <∞. Let T (y) = (1+y)/(1−y). Consequently, g(y) = f(T (y))(T ′(y))−
1
2

is a solution of

g′′ +B(y)g = 0, B(y) = A
(
T (y)

)(
T ′(y)

)2
= A

(
T (y)

) 4

(1− y)4
, (2.13)

having two zeros −1 < y1 < y2 < 1, where y1 = T−1(x1) and y2 = T−1(x2).
We proceed to show that (2.13) satisfies the hypothesis of Theorem 1, if the
non-increasing function ψ : [0, 1)→ (0, 1) is defined by ψ = Ψ ◦ T . By (2.11),

sup
0≤y<1

ψ(y)

ψ
(
y+ψ(y)
1+yψ(y)

) = sup
0≤y<1

Ψ
(
T (y)

)
Ψ
(
T (y) 1+Ψ(T (y))

1−Ψ(T (y))

) = K <∞.

Moreover, (2.12) implies

B(y)
(
ψ(|y|)(1− y2)

)2
= 4A

(
T (y)

) (
Ψ
(
T (|y|)

)
T (y)

)2 ≤ 4M, y ∈ (−1, 1).

Note that, if y is negative, then Ψ
(
T (|y|)

)
= Ψ

(
1/T (y)

)
= Ψ

(
T (y)

)
, while if y

is positive, then Ψ
(
T (|y|)

)
= Ψ

(
T (y)

)
trivially.

We conclude from Theorem 1 that the zeros y1 and y2 satisfy (2.4), and
hence∣∣∣∣ y2 − y1

1− y2y1

∣∣∣∣ ≥ 2ψ
(
|th(y1, y2)|

)
r

1 + ψ
(
|th(y1, y2)|

)2
r2

> ψ
(
|th(y1, y2)|

)
r, r =

1

max{2K
√
M, 1}

,

where th(y1, y2) is the hyperbolic midpoint of y1 and y2. By means of (2.7) we
get

ψ
(
|th(y1, y2)|

)
= Ψ

(
T (|th(y1, y2)|)

)
= Ψ

(
T (th(y1, y2))

)
= Ψ(

√
x1x2 ).

Therefore, ∣∣∣∣x2 − x1

x1 + x2

∣∣∣∣ ≥ Ψ(
√
x1x2 )

max{2K
√
M, 1}

,

which proves the claim.
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We note that a zero-separation result parallel to Theorem 5, without the
condition (2.11), can be obtained with the aid of (2.6) and the Möbius trans-
formation T (y) = (1 + y)/(1− y). The details are omitted.

The following example illustrates Theorem 5.

Example 6. We discuss the oscillation of solutions of (2.1) on the infinite end
of [1,∞) by considering A(x) ≡ 1 with Ψ defined on [1,∞) by Ψ(x) = 1/(2x).
Then

A(x)
(
Ψ(x)x

)2
=

1

4
= M,

and a simple computation shows that K = 3 in (2.11). Consecutive zeros
xk < xk+1 of non-trivial solutions of (2.1) are separated in the Euclidean sense
by π, since these solutions are linear combinations of sin and cos, and hence
xk+1 = xk + π. In this case, Theorem 5 yields

|xk − xk+1| ≥
2

3

2xk + π

2

1

2
√
xk(xk + π)

→ 1

3
, k →∞.

We close this section with two examples concerning the asymptotic growth of
the coefficient in the infinite end of positive real axis. Note that weight functions
Ψ(x) = e−x and Ψ(x) = x−α for α > 0 satisfy the assumption x2Ψ(x)2ξ(x)→ 0,
as x→∞, in Example 7.

Example 7. Let Ψ be a twice continuously differentiable positive function on
[1,∞), and define

ξ(x) = −1

2

Ψ′′(x)

Ψ(x)
− 1

2x

Ψ′(x)

Ψ(x)
+

1

4

(
Ψ′(x)

Ψ(x)

)2

+
1

4x2
.

If x2Ψ(x)2ξ(x) → 0, as x → ∞, then there exists a continuous function A on
[1,∞) with A(x) ∼ x−2Ψ(x)−2, as x → ∞, such that (2.1) possesses linearly
independent solutions

f1(x) =
√
xΨ(x) sin

(∫ x

1

dt

tΨ(t)

)
, f2(x) =

√
xΨ(x) cos

(∫ x

1

dt

tΨ(t)

)
.

The proof is similar to that in Example 4. Note that, if xΨ(x)→ 0, as x→∞,
then all solutions of (2.1) decay to zero as x → ∞, no matter how fast the
coefficient grows as x→∞.

Example 8. Suppose that A(x) = x−2Ψ(x)−2, where Ψ(x) = x−α and α > 1.
On the one hand, Theorem 5 shows that any two zeros xn−1 < xn < xn−1 + 1
of any non-trivial solution of (2.1) satisfy

|xn−1 − xn| & ta(xn−1, xn)Ψ
(
tg(xn−1, xn)

)
& xnΨ(xn) = x1−α

n , xn →∞.

The notation h(r) & g(r) means that there exists a constant C > 0 such that
h(r) ≥ C g(r) for all sufficiently large r. Note that the lower bound for the sep-
aration of zeros induces an upper bound for the number of zeros. In particular,

11



we conclude that each non-trivial solution f of (2.1) has n(r, f, 0) . rα zeros on
the interval [1, r) for 1 < r <∞. On the other hand, since A′(x)A(x)−3/2 → 0,
as x→∞, [15, Lemma 4] shows that

n(r, f, 0) ∼ 1

π

∫ r

1

√
A(x) dx ∼ 1

πα
rα, r →∞.

Consequently, the estimate for the counting function of zeros resulting from
Theorem 5 is of the correct order of magnitude.

2.3. Discussion on the weight functions

In this section we consider the weight function ψ appearing in Theorem 1.
The proof of Theorem 1 shows that the hypothesis on ψ can be relaxed. In
particular, if ψ : (−1, 1)→ (0, 1) satisfies

K = sup
a∈(−1,1)

sup
x∈(−1,1)

ψ(a)

ψ(ϕa(ψ(a)x))
<∞, (2.14)

and A(x)
(
ψ(x)(1− x2)

)2 ≤M on (−1, 1), then we deduce (2.4) with th(x1, x2)
in place of |th(x1, x2)|. For example, in the case of Example 2 this implies
the finite oscillation of non-trivial solutions near the point x = −1. By using
(2.14) instead of (2.2) we get a result more general than Theorem 1, but not
too much is gained by this generalization. This is due to the fact that (2.2) for
ψ : [0, 1)→ (0, 1) non-increasing is not very restrictive, because it permits ψ to
either decrease arbitrarily fast or arbitrarily slowly. Namely, if ψ : [0, 1)→ (0, 1)
is differentiable and convex such that ψ(x)→ 0+, as x→ 1−, then

ψ

(
x+ ψ(x)

1 + xψ(x)

)
≥ ψ(x) + ψ′(x)

(
x+ ψ(x)

1 + xψ(x)
− x
)

≥ ψ(x)

(
1 + ψ′(x)

1− x2

1 + xψ(x)

)
,

where

lim
x→1−

(
1 + ψ′(x)

1− x2

1 + xψ(x)

)
= 1.

It follows that K < ∞ in (2.2). On the other hand, if ψ : [0, 1) → (0, 1) is
concave and ψ(x)→ 0+, as x→ 1−, then the image of [x, 1) under ψ lies above
the line segment joining (x, ψ(x)) and (1, 0). Hence

ψ(x)

1− x

(
1− x+ ψ(x)

1 + xψ(x)

)
≤ ψ

(
x+ ψ(x)

1 + xψ(x)

)
,

which implies

ψ(x)

ψ
(
x+ψ(x)
1+xψ(x)

) ≤ 1 + xψ(x)

1− ψ(x)
→ 1+, x→ 1−,

12



and we again deduce (2.2). It is also worth noticing that∣∣∣∣∣∣
ψ
(
x+ψ(x)
1+xψ(x)

)
ψ(x)

− 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
ψ(x)− ψ

(
x+ψ(x)
1+xψ(x)

)
x− x+ψ(x)

1+xψ(x)

∣∣∣∣∣∣ 1− x2

1 + xψ(x)
,

and hence (2.2) holds, if the Lipschitz condition

sup
0<s<t<1

∣∣∣∣ψ(s)− ψ(t)

s− t

∣∣∣∣ <∞
is satisfied.

Example 9. We construct a non-increasing function ψ for which (2.2) fails.
We only have to fix the value of ψ at a point sequence tending to 1, while the
behavior of ψ elsewhere is not of the essence. In particular, ψ can be made
continuous or differentiable on [0, 1) if needed. Let xk = 1 − 2−k, and let
εk ∈ (0, 1) be a strictly decreasing sequence such that εk → 0+, as k → ∞.
Define ψ(x1) = 1/4, and define the values yk, ψ(yk) and ψ(xk+1) inductively by

yk =
xk + ψ(xk)

1 + xkψ(xk)
, ψ(yk) = εkψ(xk) and ψ(xk+1) = ψ(yk), k ∈ N.

Since ψ(xk) < 1/3 < (2 + xk)−1, we conclude xk < yk < xk+1 for all k ∈ N. By
the construction, we have

ψ(xk)

ψ
(
xk+ψ(xk)
1+xkψ(xk)

) =
ψ(xk)

ψ(yk)
=

1

εk
→∞, k →∞,

and hence (2.2) fails. Note that ψ(yk) lies below the line segment joining
(xk, ψ(xk)) and (xk+1, ψ(xk+1)), which implies that ψ is not concave, while
ψ(xk) lies above the line segment joining (yk−1, ψ(yk−1)) and (yk, ψ(yk)), which
shows that ψ is not convex.

We finish this section with a result, which may be of independent interest.
It shows that for all non-increasing and continuous functions ψ : [0, 1)→ (0, 1),

the expression ψ(x)ψ
(
x+ψ(x)
1+xψ(x)

)−1

in (2.2) is bounded outside of a relatively

small exceptional set. The proof is influenced by the standard proof of Borel’s
lemma needed in Nevanlinna theory.

Theorem 10. Let ψ : [0, 1)→ (0, 1) be a non-increasing and continuous func-
tion, and let k > 1. Then there exists a constant C > 0, depending on k, such
that

ψ(x) < k ψ

(
x+ ψ(x)

1 + xψ(x)

)
(2.15)

outside a set E ⊂ [0, 1) of x-values satisfying
∫
E
dx/(1− x) ≤ C <∞.
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Proof. Let E ⊂ [0, 1) be the set of x-values for which (2.15) is false. If E = ∅
or if supE < 1, then there is nothing to prove. Hence, we may suppose that
supE = 1.

Let x1 = inf E. We proceed to define a sequence {xn} of points in [0, 1)
inductively. Suppose that xn is defined for some n ∈ N, and write

x′n =
xn + ψ(xn)

1 + xnψ(xn)
.

It is clear that xn < x′n < 1. Let then xn+1 = inf
(
E \ [0, x′n)

)
. Since each set

E \ [0, x′n) is non-empty by the assumption supE = 1, this process produces an
infinite sequence {xn}. Note that by the continuity of ψ the inequality (2.15) is
false at each point x = xn, n ∈ N. Thus E contains the sequence {xn}. From
the definition of xn+1 it follows that there are no points of E in (x′n, xn+1).
Hence E ⊂

⋃∞
n=1[xn, x

′
n].

The sequence {xn} is increasing by the construction. We prove that xn →
1−. Suppose on the contrary that xn → r−, as n → ∞, for some r ∈ (0, 1).
Since xn < x′n ≤ xn+1, we have x′n → r−. Now

x′n − xn =
(1− x2

n)ψ(xn)

1 + xnψ(xn)
→ (1− r2)ψ(r)

1 + rψ(r)
> 0, n→∞,

by the continuity of ψ. This contradicts the fact that x′n−xn → 0+, as n→∞.
It remains to estimate the logarithmic measure of the set

⋃∞
n=1[xn, x

′
n]. Since

ψ is non-increasing and xn ∈ E, we have

ψ(xn+1) ≤ ψ(x′n) = ψ

(
xn + ψ(xn)

1 + xnψ(xn)

)
≤ 1

k
ψ(xn).

Inductively,

ψ(xn+1) ≤ 1

k
ψ(xn) ≤ · · · ≤ 1

kn
ψ(x1) ≤ 1

kn
,

and hence∫ x′n+1

xn+1

dx

1− x
= log

1− xn+1

1− x′n+1

= log
1 + xn+1ψ(xn+1)

1− ψ(xn+1)
≤ log

1 + ψ(xn+1)

1− ψ(xn+1)

≤ log
kn + 1

kn − 1
≤ kn + 1

kn − 1
− 1 =

2

kn − 1
.

Finally, ∫
E

dx

1− x
≤
∞∑
n=0

∫ x′n+1

xn+1

dx

1− x
≤
∞∑
n=0

2

kn − 1
<∞,

since k > 1, and we are done.

The function ψ in Example 9 shows that Theorem 10 is no longer true
without an exceptional set.
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3. Unit disc

In this section, we discuss the oscillation of solutions of

f ′′ +A(z)f = 0 (3.1)

in the unit disc, assuming that the analytic coefficient A grows essentially faster
than (1 − |z|2)−2 near the boundary of D. In particular, the following con-
siderations fall on the interplay between the growth of the coefficient and the
separation of zeros of solutions of (3.1). This section gives a detailed account
of both radial and non-radial estimates, and ties new results to the existing
oscillation theory.

For the convenience of the reader, we begin with some elementary obser-
vations in hyperbolic geometry. If z and z? are two points in any pseudo-
hyperbolic disc ∆p(a, r), where a ∈ D and r ∈ (0, 1), then the hyperbolic mid-
point th(z, z?) ∈ ∆p(a, r); the same is obviously true for all hyperbolic discs.
The following assertions, which explore the geometric position of th(z, z?) in
terms of z, z? ∈ D, are needed later. Suppose that {zn} and {z?n} are sequences
of points in D, and ζ ∈ ∂D:

(i) If zn, z
?
n → ζ, then th(zn, z

?
n)→ ζ, as n→∞;

(ii) If th(zn, z
?
n)→ ζ and |zn − z?n| → 0+, then zn, z

?
n → ζ, as n→∞;

(iii) If |th(zn, z
?
n)| → 1− and |zn − z?n| → 0+, then |zn|, |z?n| → 1−, as n→∞.

3.1. Radial weights

Our first result concerning the unit disc case resembles Theorem 1. It shows
that the separation of zeros of non-trivial solutions of (3.1) is essentially dictated
by the boundary behavior of the coefficient, and, in contrast to the real case,
also vice versa. Note that R? in (3.3) is a discontinuous function of R; if R = 0,
then the assertion concerns D, while if R > 0, then the result relates to certain
annuli in D. See Section 2.3 for detailed study of the condition (3.2).

Theorem 11. Let A be analytic in D, R ∈ [0, 1), and let ψ : [R, 1)→ (0, 1) be
a non-increasing function such that

K = sup
R?≤r<1

ψ(r)

ψ
(
r+ψ(r)
1+rψ(r)

) <∞, (3.2)

where

R? =

{
ψ(R)+R
1+ψ(R)R , if 0 < R < 1,

0, if R = 0.
(3.3)

(i) If the coefficient A satisfies

|A(z)|
(
ψ(|z|)(1− |z|2)

)2 ≤M <∞, R ≤ |z| < 1, (3.4)
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then the hyperbolic distance between any distinct zeros z1 and z2 of any
non-trivial solution of (3.1), for which |th(z1, z2)| ≥ R?, satisfies

%h(z1, z2) ≥ log
1 + ψ(|th(z1,z2)|)

max{K
√
M,1}

1− ψ(|th(z1,z2)|)
max{K

√
M,1}

. (3.5)

(ii) Conversely, if (3.5) is satisfied for all distinct zeros z1 and z2 of every non-
trivial solution of (3.1), for which |th(z1, z2)| ≥ R, then the coefficient A
satisfies

|A(z)|
(
ψ(|z|)(1− |z|2)

)2
< 3K2 max{K2M, 1}, R? ≤ |z| < 1. (3.6)

Proof. (i) Let {f1, f2} be a solution base of (3.1), and set h = f1/f2 so that
Sh = 2A. For a ∈ D, set ga(z) = (h◦ϕa)

(
ψ(|a|)rz

)
, where r = 1/max{K

√
M, 1}.

If |a| ≥ R?, where R? is given by (3.3), then

ϕa
(
ψ(|a|)rz

)
∈ ∆p

(
a, ψ(|a|)r

)
⊂ ∆p

(
a, ψ(R)

)
⊂
{
z ∈ D : R ≤ |z|

}
, z ∈ D,

and for these values of a, the assumption (3.4) yields

|Sga(z)|(1− |z|2)2 =
∣∣Sh(ϕa(ψ(|a|)rz)

)∣∣∣∣ϕ′a(ψ(|a|)rz
)∣∣2(ψ(|a|)r

)2
(1− |z|2)2

≤ 2M

( ∣∣ϕ′a(ψ(|a|)rz
)∣∣ψ(|a|)(1− |z|2)(

1− |ϕa
(
ψ(|a|)rz

)
|2
)
ψ
(
|ϕa(ψ(|a|)rz)|

))2

r2

= 2M

(
1− |z|2

1− |ψ(|a|)rz|2

)2
(

ψ(|a|)
ψ
(
|ϕa(ψ(|a|)rz)|

))2

r2

≤ 2M

 sup
|a|≥R?

ψ(|a|)

ψ
(
|a|+ψ(|a|)
1+|a|ψ(|a|)

)
2

r2 ≤ 2

for all z ∈ D. Therefore ga is univalent in D for any |a| ≥ R?, and we conclude
that h = f1/f2 is univalent in each hyperbolic disc

∆h

(
a,

1

2
log

1 + ψ(|a|)r
1− ψ(|a|)r

)
, |a| ≥ R?.

Assume now that f is a non-trivial solution of (3.1) having two distinct zeros
z1, z2 ∈ D, for which |th(z1, z2)| ≥ R?, and take a = th(z1, z2). Since %h(z1, a) =
%h(z2, a) = (1/2)%h(z1, z2), it follows that

%h(z1, z2) = 2%h(z1, a) ≥ log
1 + ψ(|a|)r
1− ψ(|a|)r

.

The claim (3.5) follows by substituting the values of a and r.
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(ii) Assume that all distinct zeros z1, z2 ∈ D of every non-trivial solution
of (3.1), for which |th(z1, z2)| ≥ R, satisfy (3.5). First, we show that each
non-trivial solution of (3.1) vanishes at most once in

∆h

(
a,

1

2
log

1 +Ra
1−Ra

)
= ∆p(a,Ra), Ra =

ψ(|a|)
K max{K

√
M, 1}

,

for |a| ≥ R?, where R? is given by (3.3). Assume on the contrary, that there
exists a non-trivial solution of (3.1) having two distinct zeros z1, z2 ∈ ∆p(a,Ra)
for some |a| ≥ R?. It follows that th(z1, z2) ∈ ∆p(a,Ra), and consequently,

|th(z1, z2)| < |a|+Ra
1 + |a|Ra

≤ |a|+ ψ(|a|)
1 + |a|ψ(|a|)

.

Hence
ψ(|a|)

ψ
(
|th(z1, z2)|

) ≤ ψ(|a|)

ψ
(
|a|+ψ(|a|)
1+|a|ψ(|a|)

) ≤ K (3.7)

by (3.2). We deduce from the antithesis and (3.7) that

%h(z1, z2) < log
1 +Ra
1−Ra

= log
1 + ψ(|a|)

Kmax{K
√
M,1}

1− ψ(|a|)
Kmax{K

√
M,1}

≤ log
1 + ψ(|th(z1,z2)|)

max{K
√
M,1}

1− ψ(|th(z1,z2|)
max{K

√
M,1}

.

This estimate contradicts (3.5), since th(z1, z2) ∈ ∆p

(
a, ψ(R)

)
⊂ {z ∈ D : |z| ≥

R}. Hence each non-trivial solution of (3.1) vanishes at most once in ∆p(a,Ra)
for every |a| ≥ R?.

Second, since z 7→ ϕa(Raz) maps D onto ∆p(a,Ra), the discussion above
shows that ga(z) = h

(
ϕa(Raz)

)
is univalent in D for all |a| ≥ R?. For these

values of a, we have

|Sga(z)|(1− |z|2)2 =
∣∣Sh(ϕa(Raz)

)∣∣|ϕ′a(Raz)|2R2
a(1− |z|2)2 ≤ 6, z ∈ D,

by Kraus’ theorem [33]. For another reference, see [34, p. 545]. Take z = 0 and
use Sh = 2A to obtain

2|A(a)|(1− |a|2)2 ψ(|a|)2

K2 max{K2M, 1}
≤ 6, |a| ≥ R?.

The assertion (3.6) follows.

We point out that a zero-separation result parallel to Theorem 11(i), without
the condition (3.2), can be obtained by applying Sturm’s comparison theorem
rather than applying Nehari’s univalence criteria. For example, if A is an ana-
lytic function in D satisfying (3.4) for R = 0, where Ψ : [0, 1) → (0,

√
M/π) is
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non-increasing and continuous, then a straightforward application of [28, Corol-
lary on p. 579] yields %h(z1, z2) ≥ 2−1 log

(
(1 + ρ)/(1− ρ)

)
, where

ρ =
π√
M

ψ

(
max{|z1|, |z2|}+ π√

M
ψ
(

max{|z1|, |z2|}
)

1 + max{|z1|, |z2|} π√
M
ψ
(

max{|z1|, |z2|}
))

·

(
1−

(
π√
M

ψ
(

max{|z1|, |z2|}
))2

)
,

for all distinct zeros z1 and z2 of every non-trivial solution f of (3.1). We may
also apply Sturm’s comparison theorem directly on the hyperbolic geodesics
between distinct zeros, and then obtain a slightly different lower bound for
the separation of zeros corresponding the estimate (2.6). In this approach the
weight function ψ is not required to be continuous. For a similar reasoning, see
[7, p. 19].

Conversely, by a modification of the proof of Theorem 11(ii), if M ∈ (0,∞)
and ψ : [0, 1)→ (0,

√
M) is non-increasing, and if all distinct zeros z1 and z2 of

every non-trivial solution satisfy

%h(z1, z2) ≥ log
1 + ψ

(
max{|z1|, |z2|}

)
/
√
M

1− ψ
(

max{|z1|, |z2|}
)
/
√
M
,

then

|A(z)|

(
ψ

(
|z|+ ψ(|z|)/

√
M

1 + |z|ψ(|z|)/
√
M

)
(1− |z|2)

)2

≤ 3M, z ∈ D.

The advantage of these results, when compared to Theorem 11, is the fact
that the technical condition (3.2) is not needed. However, when (3.2) is satisfied,
then one may use either these results or Theorem 11, and find the most useful
estimate for each purpose by studying the different constants appearing in the
statements and the behavior of the weight function ψ in the points in question.

Theorem 11(i) is proved by means of [34, Theorem I], although we could
equally use [34, Theorem II], and estimate the growth of |Sga(z)| without the
weight (1 − |z|2)2. This is due to the fact that ψ does not attain the value 1.
The same is also true for Theorems 15(i) and 25(i) below. Moreover, Schwarz’s
results [36, Theorems 3 and 4] (see also [26]) follow from Theorem 11(i) by
choosing R = 0 and ψ ≡ C ∈ (0, 1) sufficiently large.

We turn to consider the situation in which the quantity supz∈D |A(z)|(1 −
|z|2)2 is no longer finite.

Example 12. Let q ∈ (1,∞), and consider the locally univalent analytic func-
tion p(z) =

(
log(e/(1− z))

)q
in D. The functions

f1(z) =
1√
p′(z)

sin
(
p(z)

)
, f2(z) =

1√
p′(z)

cos
(
p(z)

)
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are linearly independent solutions of (3.1) with

A(z) =
(
p′(z)

)2
+

1

2
Sp(z) =

1

(1− z)2

(
q2

(
log

e

1− z

)2(q−1)

+
1

4
+

1

4

1− q2(
log e

1−z
)2
)
.

Zeros of f1 are real, and they are given by zk = 1 − exp
(
1 − (kπ)1/q

)
, k ∈ Z.

Evidently,

%h(zk, zk+1) =
1

2
log

1 + %p(zk, zk+1)

1− %p(zk, zk+1)
∼ π

2q
(πk)1/q−1, k →∞.

An application of Theorem 11 with ψ(r) = (1/2)
(

log(e/(1 − r))
)1−q

, for

which K =
(

log(2e)
)q−1

in (3.2), yields

%h(zk, zk+1) & ψ
(
|th(zk, zk+1|

)
∼ 1

2
(πk)1/q−1, k →∞.

We conclude that the estimate resulting from Theorem 11 is of the correct order
of magnitude.

The following two examples concern the case when |A(z)| grows at most like
a negative power of 1− |z|, as |z| → 1−. The set of all such analytic functions
is known as the Korenblum space A−∞, whose theory is rich. For example,
A−∞ contains all classical Hardy and Bergman spaces of the disc. It is also
well-known that in the sense of differential equations, functions in A−∞ play a
similar role in D as polynomials do in C; see Section 4, and for example [11, 22].

Example 13. For β > 0, the functions

fj(z) = (1− z)
β+1
2 exp

(
(−1)j+1i

(1− z)β

)
, j = 1, 2, (3.8)

are linearly independent solutions of (3.1), where

A(z) =
β2

(1− z)2β+2
+

1

4

1− β2

(1− z)2
. (3.9)

Functions f1 and f2 are non-vanishing, and the zeros of f = αf1 + βf2, where
αβ 6= 0, are given by

zk = 1−
(

2

c+ 2πk

)1/β

, k ∈ Z.

Here c is a complex constant, which agrees with the principal value of−i log (−β/α).
Take α = −1 and β = ei, which imply that c = 1, and further, all zeros zk

of f = αf1 + βf2 are real. Moreover, %h(zk, zk+1) ∼ (2βk)−1, as k →∞, while
Theorem 11 with ψ(r) = (1/2)(1 − r)β , K = 2β and M = β2 + 1/16 gives us
the estimate

%h(zk, zk+1) ≥
ψ
(
|th(zk, zk+1)|

)
max{K

√
M, 1}

∼ 1

max{2β
√
β2 + 1/16, 1} 2πk

, k →∞.
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Differential equations in Examples 12 and 13 are solvable, and therefore we
are able to verify that the bounds for the separation of zeros of solutions given
by Theorem 11 are of the correct order of magnitude. In the following example
we investigate a differential equation, which is too complicated to be solved
explicitly. However, a notable amount of information about the solutions can
be retrieved whenever the behavior of the coefficient is known. The coefficient A
in Example 14 is given as an infinite product, which has regularly spaced zeros
in D. It turns out that A grows regularly in a large subset of D, and possesses
similar growth properties to what is commonly seen with lacunary series. The
weights ω satisfying (3.10) are known as regular weights, see for example [38].
We write g(r) � h(r), if there are positive constants C1 and C2, which are
independent of r, such that C1 g(r) ≤ h(r) ≤ C2 g(r) for all sufficiently large r.

Example 14. Let 0 < p < ∞ and let ω : [0, 1) → (0,∞) be a continuous

function such that
∫ 1

0
ω(r) dr < 1,

1

ω(r)

∫ 1

r

ω(s) ds � (1− r), (3.10)

and (∫ 1

r
ω(s) ds

) p
2

1− r
→ 0+, r → 1−.

By [38, Lemma 1.1(i)] there are constants 0 < α ≤ β, depending on ω, such
that(

1− r
1− t

)α ∫ 1

t

ω(s) ds ≤
∫ 1

r

ω(s) ds ≤
(

1− r
1− t

)β ∫ 1

t

ω(s) ds, 0 ≤ r ≤ t < 1.

(3.11)
Following [14], let A be the infinite product defined by

A(z) =

∞∏
k=1

Fk(z) =

∞∏
k=1

1 + akz
nk

1 + a−1
k znk

, z ∈ D, ak =

 ∫ 1

1−n−1
k
ω(s) ds∫ 1

1−n−1
k+1

ω(s) ds

p

,

where nk+1/nk = q for all k ∈ N, and q is any fixed natural number strictly
greater than β/α. Define L = qαp and U = qβp. By choosing r = 1 − n−1

k

and t = 1 − n−1
k+1 in (3.11) we conclude 1 < L < ak < U < ∞ for all k ∈ N.

Moreover, note that Lq > U , which is needed later. We begin with a discussion
on the properties of A, and then proceed to consider solutions of (3.1).

Function A is analytic in D, since |Fk(z)| = |ak| %p
(
a−1
k ,−znk

)
< U <∞ for

all z ∈ D, and

∞∑
k=1

|Fk(z)− 1| ≤
∞∑
k=1

|ak − a−1
k | |z|nk

1− a−1
k |z|nk

≤
ak − a−1

k

1− a−1
k

∞∑
k=1

|z|nk ≤ (U + 1)

∞∑
k=1

|z|nk
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converges uniformly on compact subsets of D; see [39, Theorem 15.4]. Regarding
the growth of A, we conclude from [14] that

M(r,A) .

(∫ 1

r

ω(s) ds

)−p
, 0 ≤ r < 1, (3.12)

where M(r,A) = max|z|=r |A(z)| is the maximum modulus of A. In addition,
by a modification of [14], there exists a subset of [0, 1), namely

F =

∞⋃
k=1

[
a
−n−1

k (1−δ)
k a

−n−1
k+1δ

k+1 , a
−n−1

k δ

k a
−n−1

k+1(1−δ)
k+1

]
, δ ∈ (0, 1/2),

such that

M(r,A) �
(∫ 1

r

ω(s) ds

)−p
, r ∈ F. (3.13)

The lower density d(F ) of F is positive, provided that δ is sufficiently small,
since

d(F ) = lim inf
r→1−

m
(
F ∩ [r, 1)

)
1− r

≥ lim
k→∞

a
−n−1

k+1δ

k+1 a
−n−1

k+2(1−δ)
k+2 − a−n

−1
k+1(1−δ)

k+1 a
−n−1

k+2δ

k+2

1− a−n
−1
k δ

k a
−n−1

k+1(1−δ)
k+1

≥ lim
k→∞

(
U−δ/q−(1−δ)/q2

)1/nk
−
(
L−(1−δ)/q−δ/q2

)1/nk

1−
(
U−δ−(1−δ)/q

)1/nk
=

(
1−δ
q + δ

q2

)
logL−

(
δ
q + 1−δ

q2

)
logU(

δ + 1−δ
q

)
logU

−→ logLq − logU

q logU
> 0, δ → 0+,

by Bernoulli-l’Hospital’s rule.
The following discussion deals with a-points of A, where a ∈ C. The zeros

of A can be found explicitly, and in particular, there are exactly nk distinct zeros

on each circle
{
z ∈ D : |z| = a

−1/nk
k

}
. This implies that the non-integrated

counting function of zeros in {z ∈ D : |z| ≤ r} satisfies n(r,A, 0) � (1 − r)−1,
as r → 1−. Similarly as in the proof of [12, Theorem 3], a laborious calculation
shows that

T (r,A) ∼ logM(r,A) ∼ N(r,A, a) ∼ −p log

(∫ 1

r

ω(s) ds

)
, r → 1−,

for all a ∈ C. Here T (r,A) is the Nevanlinna characteristic of A, and N(r,A, a)
is the integrated counting function for a-points of A.

We turn to consider the properties of solutions of the differential equation
(3.1). Let ψ : [0, 1)→ (0, 1) be a non-increasing function such that

ψ(r) �

(∫ 1

r
ω(s) ds

) p
2

1− r
, r → 1−. (3.14)
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By choosing tr = r+ψ(r)
1+rψ(r) in (3.11), we obtain

sup
0≤r<1

ψ(r)

ψ(tr)
≤ sup

0≤r<1

(
1− tr
1− r

)1−βp/2

= sup
0≤r<1

(
1− ψ(r)

1 + rψ(r)

)1−βp/2

<∞,

from which (3.2) follows. Now Theorem 11 ensures two things. First, the
pseudo-hyperbolic distance between any two distinct zeros z1 and z2 of any
non-trivial solution f of (3.1) satisfies %p(z1, z2) & ψ(|th(z1, z2)|). Second, there
must exist a sequence fn of non-trivial solutions of (3.1), such that each fn
possesses two distinct zeros zn, z

?
n ∈ D, with |th(zn, z

?
n)| > 1− 1/n and

ψ
(
|th(zn, z

?
n)|
)
. %p(zn, z

?
n) . τ

(
|th(zn, z

?
n)|
)
, n ∈ N, (3.15)

where τ : [0, 1)→ (0, 1) is any non-increasing function, which satisfies (3.2) and
1 < τ(r)/ψ(r) → ∞, as r → 1−. To prove the second inequality in (3.15),
suppose that there exists n ∈ N such that (3.5) with τ in place of ψ is valid
for all distinct zeros z and z? of every non-trivial solution of (3.1), for which
|th(z, z?)| > 1− 1/n. Then, (3.14) and (3.13) imply that(

τ(r)

ψ(r)

)2

�
(
τ(r)(1− r)

)2(∫ 1

r
ω(s) ds

)p �M(r,A)
(
τ(r)(1− r2)

)2
, r ∈ F,

where M(r,A)
(
τ(r)(1− r2)

)2
is uniformly bounded for all r ∈ (R?, 1) by The-

orem 11(ii), and where R? is given by (3.3) with R = 1 − 1/n. This is clearly
a contradiction, which proves that for each n ∈ N there corresponds a non-
trivial solution fn of (3.1) having two distinct zeros zn, z

?
n ∈ D such that

|th(zn, z
?
n)| > 1− 1/n and

%h(zn, z
?
n) < log

1 + C τ
(
|th(zn, z

?
n)|
)

1− C τ
(
|th(zn, z?n)|

) , (3.16)

where C > 0 is a constant independent of n. The second inequality in (3.15)
follows. Note that, if τ(r) decays to zero as r → 1−, then by (3.16) we have
|zn|, |z?n| → 1−, as n→∞.

3.2. Non-radial weights

We take the opportunity to state a slightly more general version of Theo-
rem 11. This modification utilizes non-radial weights, and it preserves the local
information on zeros of solutions more accurately than its radial counterpart.
It is useful to keep in mind the geometric properties of hyperbolic mid-points,
which were mentioned in the beginning of Section 3, since these elementary
observations allow us to pinpoint the accumulation points of the sequences of
zero-pairs with minimal separation. Note that a condition similar to (3.17)
arises naturally in a study of certain classes of meromorphic functions closely
related to the normal functions [2].
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Theorem 15. Let A be analytic in D, and let ψ : D→ (0, 1/2) be such that

K = sup
a,z∈D

ψ(a)

ψ
(
ϕa(ψ(a)z)

) <∞. (3.17)

Let ζ ∈ ∂D, R ∈ (0, 2], and

R? =

{
R/5, if 0 < R < 2,

2, if R = 2.
(3.18)

(i) If the coefficient A satisfies

|A(z)|
(
ψ(z)(1− |z|2)

)2 ≤M <∞, z ∈ D ∩D(ζ,R), (3.19)

then the hyperbolic distance between any distinct zeros z1 and z2 of any
non-trivial solution of (3.1), for which |ζ − th(z1, z2)| < R?, satisfies

%h(z1, z2) ≥ log
1 + ψ(th(z1,z2))

max{K
√
M,1}

1− ψ(th(z1,z2))

max{K
√
M,1}

. (3.20)

(ii) Conversely, if (3.20) is satisfied for all distinct zeros z1 and z2 of ev-
ery non-trivial solution of (3.1), for which |ζ − th(z1, z2)| < R, then the
coefficient A satisfies

|A(z)|
(
ψ(z)(1− |z|2)

)2
< 3K2 max{K2M, 1}, z ∈ D∩D(ζ,R?). (3.21)

Proof. The proof of Theorem 15 is similar to that of Theorem 11, and hence
we content ourselves to merely indicate the necessary changes.

(i) Let ga(z) = (h ◦ ϕa)
(
ψ(a)rz

)
, where h is a quotient of any two linearly

independent solutions f1 and f2 of (3.1), and r = 1/max{K
√
M, 1}. If a ∈ D

and |ζ − a| < R?, then

ϕa
(
ψ(a)rz

)
∈ ∆p

(
a, ψ(a)r

)
⊂ ∆p(a, 1/2) ⊂ D ∩D(ζ,R), z ∈ D. (3.22)

If a ∈ D and |ζ − a| < R?, then (3.19) and (3.22) imply that

|Sga(z)|(1−|z|2)2 ≤ 2M

(
1− |z|2

1− |ψ(a)rz|2

)2
(

ψ(a)

ψ
(
ϕa(ψ(a)rz)

))2

r2 ≤ 2, z ∈ D.

We conclude that ga is univalent in D for any a ∈ D satisfying |ζ − a| < R?.
Consequently, h is univalent in each hyperbolic disc

∆h

(
a,

1

2
log

1 + ψ(a)r

1− ψ(a)r

)
, a ∈ D, |ζ − a| < R?,

and the claim (3.20) follows by choosing a = th(z1, z2), where z1 and z2 are any
two distinct zeros of any non-trivial solution of (3.1), for which |ζ− th(z1, z2)| <
R?.
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(ii) Assume that all distinct zeros z1, z2 ∈ D of every non-trivial solution of
(3.1), for which |ζ − th(z1, z2)| < R, satisfy (3.20). First, we prove that each
non-trivial solution of (3.1) vanish at most once in

∆h

(
a,

1

2
log

1 +Ra
1−Ra

)
= ∆p(a,Ra), Ra =

ψ(a)

K max{K
√
M, 1}

,

for any a ∈ D satisfying |ζ − a| < R?, where R? is given by (3.18). Assume on
the contrary, that there exists a non-trivial solution of (3.1) having two distinct
zeros z1, z2 ∈ ∆p(a,Ra) for such a. Since th(z1, z2) ∈ ∆p(a,Ra) ⊂ ∆p

(
a, ψ(a)

)
,

and further, z 7→ ϕa(ψ(a)z) maps D onto ∆p

(
a, ψ(a)

)
, we obtain

ψ(a)

ψ
(
th(z1, z2)

) ≤ sup
a∈D

(
sup

z∈∆p(a,ψ(a))

ψ(a)

ψ(z)

)
= sup
a,z∈D

ψ(a)

ψ
(
ϕa(ψ(a)z)

) = K.

Now

%h(z1, z2) < log
1 +Ra
1−Ra

= log
1 + ψ(a)

Kmax{K
√
M,1}

1− ψ(a)

Kmax{K
√
M,1}

≤ log
1 + ψ(th(z1,z2))

max{K
√
M,1}

1− ψ(th(z1,z2)

max{K
√
M,1}

,

which contradicts (3.20), since th(z1, z2) ∈ ∆p

(
a, 1/2

)
⊂ D ∩D(ζ,R).

Second, since z 7→ ϕa(Raz) maps D onto ∆p(a,Ra), the discussion above
shows that ga(z) = h

(
ϕa(Raz)

)
is univalent in D for all a ∈ D∩D(ζ,R?). Now

2|A(a)|(1− |a|2)2 ψ(a)2

K2 max{K2M, 1}
≤ 6, a ∈ D ∩D(ζ,R?),

by Kraus’ theorem [33], or alternatively [34, p. 545], which proves the assertion
(3.21).

The strength of Theorem 15 is demonstrated in the following example.

Example 16. Let A be an analytic function in D, and assume that

p = inf

{
α ≥ 0 : sup

z∈D
|A(z)|

(
|1− z|α(1− |z|2)

)2
<∞

}
> 0. (3.23)

Let q > p, and denote ψ(z) = |1 − z|q/2q+1. Now ψ : D → (0, 1/2), and K in
(3.17) satisfies

K = sup
a∈D

(
sup

z∈∆p(a,ψ(a))

ψ(a)

ψ(z)

)
≤ sup

a∈D

(
sup

z∈∆p(a,1/2)

∣∣∣∣1− a1− z

∣∣∣∣q
)
≤ 3q.

According to (3.23) there exists a positive constant M such that (3.19) holds.
First, zero-sequences of non-trivial solutions of (3.1), which are contained in

D\D(1, r) for some r > 0, are separated in the hyperbolic sense by Theorem 15.
This follows from the fact that ψ is bounded away from zero in D \D(1, r). In
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particular, this means that any zero-sequence converging to any ζ ∈ ∂D \ {1}
is separated in the hyperbolic metric. Second, there exists an infinite sequence
of zero-pairs of non-trivial solutions of (3.1) such that the separation between
the zeros in each pair is minimal. To make this vague statement more precise,
let ε ∈ (0, p). For each n ∈ N there corresponds a pair of zeros (zn, z

?
n) of a

non-trivial solution fn of (3.1) such that |1− th(zn, z
?
n)| < 1/n, and

log
1 + Cε |1− th(zn, z

?
n)|p+ε

1− Cε |1− th(zn, z?n)|p+ε
≤ %h(zn, z

?
n) < log

1 + Cε |1− th(zn, z
?
n)|p−ε

1− Cε |1− th(zn, z?n)|p−ε
,

(3.24)
where Cε is a constant depending only on ε. The first inequality in (3.24) follows
from the first assertion of Theorem 15 with R = 2, and it is valid for all zero-
pairs of all non-trivial solutions of (3.1). Assume on the contrary, that there
exists n ∈ N such that the second inequality in (3.24) in false. That is, all zero-
pairs (z, z?) of every non-trivial solution of (3.1), for which |1−th(z, z?)| < 1/n,
satisfy

%h(z, z?) ≥ log
1 + Cε |1− th(z, z?)|p−ε

1− Cε |1− th(z, z?)|p−ε
.

The second assertion of Theorem 15 now implies that p < p − ε, which is
obviously impossible. Remark that th(zn, z

?
n) → 1, as n → ∞, and hence

zn, z
?
n → 1, as n→∞, by (3.24).

Note that, if q ≥ 0, and the coefficient A satisfies |A(z)| |1− z|2q (1−|z|2)2 →
0+, as |z| → 1−, then z = 1 is the only possible accumulation point of the zeros
of non-trivial solutions of (3.1) by [20, Theorem 8]. However, condition (3.23)
allows zeros to accumulate to any point on ∂D.

The last result in this section is a local version of Theorem 15. The proof is
an easy modification of that of Theorem 15, and hence is omitted.

Theorem 17. Let A be analytic in D, ζ ∈ ∂D, and let Ω(ζ) ⊂ D be a simply
connected domain such that Ω(ζ)∩D = {ζ}. Let s ∈ (0, 1), and let ψ : D→ (0, s)
be such that

K = sup
a∈Ω(ζ)

sup
z∈D

ψ(a)

ψ
(
ϕa(ψ(a)z)

) <∞.
(i) If the coefficient A satisfies |A(z)|

(
ψ(z)(1− |z|2)

)2 ≤ M <∞ for all z ∈⋃
w∈Ω(ζ) ∆p(w, s), then the hyperbolic distance between any distinct zeros

z1 and z2 of any non-trivial solution of (3.1), for which th(z1, z2) ∈ Ω(ζ),
satisfies (3.20).

(ii) Conversely, if (3.20) is satisfied for all distinct zeros z1 and z2 of every
non-trivial solution of (3.1), for which th(z1, z2) ∈

⋃
w∈Ω(ζ) ∆p(w, s), then

the coefficient A satisfies |A(z)|
(
ψ(z)(1−|z|2)

)2
< 3K2 max{K2M, 1} for

all z ∈ Ω(ζ).
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Theorem 17(ii) implies that, if the analytic coefficient A has a singularity of
the type (ζ − z)−α for some α > 2 at a point z = ζ ∈ ∂D, then each simply
connected domain Ω(ζ) ⊂ D satisfying Ω(ζ) ∩D = {ζ} contains infinitely many
zero-pairs of non-trivial solutions of (3.1) with minimal separation; compare to
Corollary 32 below.

3.3. Connection to the existing oscillation theory

We state the following observations on Theorem 11: If A is analytic in D,
and ψ : [0, 1)→ (0, 1) is a non-increasing function satisfying (3.2), then

sup
z∈D
|A(z)|

(
ψ(|z|)(1− |z|2)

)2
<∞ ⇐⇒ inf

(zj ,zk)∈Γ0(A)

%p(zj , zk)

ψ(|th(zj , zk)|)
> 0,

(3.25)
where we define Γr(A) for r ∈ [0, 1) to be the set of pairs (z1, z2) such that
z1, z2 ∈ D are distinct zeros of the same non-trivial solution of (3.1), and
|th(z1, z2)| ≥ r. In particular, if the coefficient A is analytic in D such that

the expression supz∈D |A(z)|
(
ψ(|z|)(1 − |z|2)

)2
is finite, and if there exists a

solution f of (3.1) whose zero-sequence has a subsequence {zn}, which satisfies
%p(zn, zn+1)/ψ

(
|th(zn, zn+1)|

)
→ 0+, as n→∞, then f ≡ 0.

If ψ : [0, 1)→ (0, 1) is a non-increasing function such that limr→1− ψ(r) = 0,
and there exists a constant t ∈ (0, 1) for which

sup
0≤r<1

ψ(r)

ψ
(
r+t
1+rt

) <∞, (3.26)

then by modifying the proof of Theorem 11, one can show that

lim
|z|→1−

|A(z)|(ψ(|z|)(1−|z|2))2 = 0 ⇐⇒ lim
r→1−

inf
(zj ,zk)∈Γr(A)

%p(zj , zk)

ψ(|th(zj , zk)|)
=∞.

For example, ψ(r) = (1− r)α/2, α > 0, satisfies (3.26) for any fixed t ∈ (0, 1).
Depending on the assumptions on the auxiliary function ψ, the separation

condition in (3.25) may also be expressed in terms of ϕ-separation, which was
introduced in [2]. Note that |th(z1, z2)| ≤ max{|z1|, |z2|} for all z1, z2 ∈ D.

We proceed to compare Theorem 11 with existing results in the literature.
To this end, several definitions and observations are required. For p > 0, the
growth space H∞p consists of those analytic functions g in D, for which

‖g‖H∞p = sup
z∈D
|g(z)|(1− |z|2)p <∞.

Recall that the union of all these spaces is the Korenblum space A−∞. Moreover,
we say that g ∈ H∞p provided that p = inf {q > 0 : g ∈ H∞q }. The order of
growth σM (g) of an analytic function g in D, with respect to the maximum
modulus, is given by

σM (g) = lim sup
r→1−

log+ log+M(r, g)

− log(1− r)
.
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If A is an analytic function in D, and (3.1) admits a non-trivial solution f
which vanishes at distinct points zn and z?n satisfying |zn − z?n| < εn for all
n ∈ N, then the following affirmations are valid by Theorem 11:

(i) If 0 < εn < C1 exp
(
−C2/(1−|zn|)

)
for some C1, C2 > 0, then the infimum

part of (3.25) fails for the weight ψ(r) = (1 − r)α/2 for all α > 0, and
hence A 6∈ A−∞. As a consequence we get [13, Theorem 5].

(ii) If 0 < εn < C1 exp
(
−C2 exp

(
C3/(1−|zn|)

))
for some C1, C2, C3 > 0, then

the infimum part of (3.25) fails for the weight ψ(r) = exp
(
− 1/(1− r)α

)
for all α > 0, and hence σM (A) =∞.

It is well-known that the growth of the coefficient of (3.1) is related to the
growth of solutions, and to the number of zeros of solutions. Our aim is to
connect the separation of zeros of solutions of (3.1) to these widely studied
properties in the case that the coefficient belongs to the Korenblum space. To
this end, we introduce a new quantity, which measures the separation of zeros
of non-trivial solutions of (3.1). Supposing that A is an analytic function in D,
we define the zero separation exponent for (3.1) to be

ΛDE(A) = inf

{
q > 0 : inf

(zj ,zk)∈Γ0(A)

%p(zj , zk)

(1− |th(zj , zk)|)q
> 0

}
, (3.27)

with the convention that ΛDE(A) = ∞ if the infimum in (3.27) is zero for all
q > 0.

The following result, which is a consequence of Theorem 11, underscores the
linkage between existing growth results and the separation of zeros. Note that
the equivalence of (i) and (iv) in Corollary 18 below is valid for all λ > 0.

Corollary 18. Let A be an analytic function in D, and λ ∈ (1,∞). Then, the
following assertions are equivalent:

(i) A ∈ H∞2λ+2;

(ii) All non-trivial solutions f of (3.1) satisfy σM (f) = λ;

(iii) There is a solution f of (3.1) such that σM (f) = λ;

(iv) ΛDE(A) = λ.

Proof. Equivalence of (i), (ii) and (iii) is essentially known: Implication from
(i) to (ii), and hence to (iii), follows from [11, Theorem 1.4]. Assume that (iii)
holds. Then [11, Corollary 1.3] and [20, Lemma 2] prove that A ∈ H∞p for all
p > 2(λ+ 1), and (i) follows by [11, Theorem 1.4].

We complete the proof by showing that (i) and (iv) are equivalent. Let ε > 0
be such that λ− ε/2 > 1. If (iv) holds, then

inf
(zj ,zk)∈Γ0(A)

%p(zj , zk)

ψ(|th(zj , zk)|)
> 0 for ψ(r) = 2−1(1− r)λ+ε/2,
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and

inf
(zj ,zk)∈Γ0(A)

%p(zj , zk)

ψ(|th(zj , zk)|)
= 0 for ψ(r) = 2−1(1− r)λ−ε/2.

In the former case we have supz∈D |A(z)|
(
ψ(|z|)(1−|z|2)

)2
<∞ by (3.25), while

in the latter case this supremum is infinite. This proves (iv) ⇒ (i). The proof
of (i) ⇒ (iv) is similar, and hence the details are omitted.

Conditions (i) and (ii) in Corollary 18 are not equivalent for λ = 1, since (3.1)
with A(z) = −4z/(1− z)4 admits a bounded solution exp

(
− (1 + z)/(1− z)

)
.

Recent findings in [10] show that there is a clever way to measure the growth
of slowly growing analytic functions in D, and it seems that the assumption
λ ∈ (1,∞) in Corollary 18 can be relaxed to λ ∈ (0,∞), provided that the order
of growth is defined differently.

When discussing the quantity of zeros of solutions, it is natural to measure
the growth of the coefficient by means of integrated estimates. The order of
growth of an analytic function g in D, with respect to the Nevanlinna charac-
teristic T (r, g), is

σT (g) = lim sup
r→1−

log+ T (r, g)

− log(1− r)
.

Moreover, the exponent of convergence of the zero-sequence {zn} of g is

λ(g) = inf

{
β > 0 :

∞∑
n=1

(1− |zn|)β+1 <∞

}
.

Note that λ(g) measures the quantity of zeros of g, whereas ΛDE(A) quantifies
the minimal separation of zeros of all non-trivial solutions of (3.1). Despite of
the apparent differences of these quantities, for non-trivial solutions f of (3.1),
ΛDE(A) and λ(f) are closely related.

Theorem 19. Let A be an analytic function in D. Then

sup
f
λ(f) ≤ ΛDE(A) ≤ 1 + sup

f
λ(f), (3.28)

where the supremums are taken over all non-trivial solutions f of (3.1). In
particular, the quantities supf λ(f) and ΛDE(A) are finite or infinite at the
same time.

Proof. To prove the first inequality in (3.28), assume that ΛDE(A) = λ <∞,
for otherwise there is nothing to prove. Then A ∈ H∞2λ+2 by Corollary 18, and
hence ∫

D
|A(z)| 12 (1− |z|2)λ+ε dm(z) <∞, ε > 0.

Therefore all non-trivial solutions f of (3.1) satisfy λ(f) ≤ λ = ΛDE(A) by [23,
Theorem 1.5].
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If 1 + supf λ(f) = λ ∈ [1,∞), then∫
D
|A(z)| 12 (1− |z|2)λ−1+ε dm(z) <∞, ε > 0,

by [23, Theorem 1.5]. Hence A ∈ H∞p for all p > 2 + 2λ by the subharmonicity.
We deduce that ΛDE(A) ≤ λ = supf λ(f) + 1 by Corollary 18.

Inequalities in (3.28) are reminiscent to the well-known inequalities σT (g) ≤
σM (g) ≤ 1+σT (g), which are satisfied for all analytic functions g in D. However,
estimates in Theorem 19 concern zeros of functions, which are solutions of the
same differential equation (3.1).

3.4. Zeros of individual functions

The following argument is a modification of Hille’s example in [36, Eq. (2.12)],
and it shows that we can find a sequence of zero-pairs of non-trivial solutions,
which converges to the boundary singularity of the coefficient, even though all
such solutions have at most two zeros in D.

Example 20. Let A(z) = −8/(1− z2)2. Then A is analytic in D, and differen-
tial equation (3.1) admits a non-vanishing solution base {f1, f2}, where

f1(z) =
√

1− z2

(
1− z
1 + z

)3/2

and f2(z) =
√

1− z2

(
1− z
1 + z

)−3/2

.

Since f1/f2 assumes every a-point at most twice, all non-trivial solutions of
(3.1) have at most two zeros in D. For n ∈ N, we define fn = f1 + f2/n. Then
fn has exactly two zeros zn, z

?
n ∈ D, which are given by

zn =
1− n−1/3 exp(iπ/3)

1 + n−1/3 exp(iπ/3)
and z?n =

1− n−1/3 exp(iπ/3)

1 + n−1/3 exp(iπ/3)
.

If we let n→∞, then zn and z?n = zn converge to z = 1 inside the unit disc such
that %p(zn, z

?
n) =

√
3/2 for all n ∈ N. Application of Theorem 11 shows that

the pseudo-hyperbolic distance between any distinct zeros of any non-trivial
solution of (3.1) is at least

√
2/4.

Since ΛDE(A) measures the separation of zeros of all non-trivial solutions
of (3.1), it can be considered as a property of the differential equation (3.1)
itself. Alongside with ΛDE(A) we can also consider the separation of zeros of
individual functions whether or not they are solutions of a differential equation
(3.1). If {zn} is the zero-sequence of an analytic function f in D, then we define
the zero separation exponent for f to be

Λ(f) = inf

{
q > 0 : inf

j 6=k

%p(zj , zk)

(1− |th(zj , zk)|)q
> 0

}
, (3.29)

and set Λ(f) = ∞, if the infimum in (3.29) is zero for all q > 0. Further, set
Λ(f) = 0 if f has only finitely many zeros in D, or if f has multiple zeros.
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Evidently, Λ(f) ≤ ΛDE(A) for all solutions f of (3.1). The next example
illustrates that for some non-trivial solutions f of (3.1) we can have Λ(f) = 0,
while for other solutions f of (3.1) Λ(f) and ΛDE(A) are equal.

Example 21. In the case of Example 13, weights ψ(r) = 2−1(1− r)α for α > 0
together with (3.25) show that ΛDE(A) = β. However, both base functions f1

and f2 in (3.8) are non-vanishing, and hence Λ(f1) = Λ(f2) = 0. By Example 13
there is a solution, for example f = −f1 + eif2, for which Λ(f) = ΛDE(A).
Moreover, the convergence exponent of f satisfies λ(f) = β.

We remark that all non-trivial solutions f of (3.1) are of maximal growth.
Namely, [11, Theorem 1.4] and [31, Theorem 2] show that σM (f) = β and
σT (f) = max{0, β − 1}.

We conclude this discussion by comparing the quantities λ(f) and Λ(f).
On the one hand, it is obvious that Λ(f) . λ(f) is not true for all analytic
functions in D. For example, one can easily find a Blaschke product B for which
Λ(B) =∞ and λ(B) = 0. In fact, Λ(f) . λ(f) is not true even for solutions of
(3.1), since [13, Theorem 5] shows that we can construct a differential equation
(3.1) having a solution f such that Λ(f) = ΛDE(A) = ∞ while λ(f) = 0. On
the other hand, if Λ(f) is finite, then λ(f) is finite. The proof of the sharp
inequality λ(f) ≤ 2Λ(f) is similar to the proof of Theorem 33 below, and hence
is omitted.

Note the following observation concerning solutions of differential equation
(3.1). If A ∈ H∞2λ+2 for λ > 1, then [23, Corollary 1.6] ensures the existence of a
solution f such that λ−1 ≤ λ(f) ≤ λ. Now Λ(f) ≥ (λ−1)/2, which means that
there is at least one non-trivial solution, whose zero-sequence contains infinitely
many zeros, such that the separation between distinct zeros becomes small near
the boundary.

3.5. Uniform local univalence

Theorem 11 gives rise to natural subclasses of Uloc(D), the class of locally
univalent analytic functions in D. Namely, let ψ : [0, 1) → (0, 1) be a non-
increasing function such that (3.2) is satisfied. We write f ∈ Uψ provided that
there exists δ ∈ (0, 1) such that f is univalent in each hyperbolic disc

∆h

(
a,

1

2
log

1 + ψ(|a|)δ
1− ψ(|a|)δ

)
, a ∈ D.

Functions in Uψ are called ψ-uniformly locally univalent functions in D. The fol-
lowing theorem characterizes these functions f among Uloc(D) by means of the
growth of their pre-Schwarzian derivatives f ′′/f ′ and their Schwarzian deriva-
tives Sf .

Theorem 22. Let f ∈ Uloc(D), and let ψ : [0, 1) → (0, 1) be a non-increasing
function such that (3.2) is satisfied. Then the following assertions are equivalent:

(i) f ∈ Uψ;
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(ii) sup
z∈D

∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣ψ(|z|)(1− |z|2) <∞;

(iii) sup
z∈D
|Sf (z)|

(
ψ(|z|)(1− |z|2)

)2
<∞.

Proof. The implication (iii) ⇒ (i) is implicit in the proof of Theorem 11.
If f ∈ Uψ, then there exists δ ∈ (0, 1) such that ga(z) = (f ◦ ϕa)

(
ψ(|a|)δz

)
is univalent for all a ∈ D. Take ha(z) =

(
ga(z)− ga(0)

)
/g′a(0) so that ha(0) = 0

and h′a(0) = 1. Now ha belongs to the Schlicht class of normalized univalent
functions in D, and hence the modulus of the coefficient of z2 in the Maclaurin
expansion of ha is bounded by two. Consequently,

ψ(|a|)δ
∣∣∣∣f ′′(a)

f ′(a)
(1− |a|2)− 2a

∣∣∣∣ =

∣∣∣∣g′′a(0)

g′a(0)

∣∣∣∣ = |h′′a(0)| ≤ 4,

and it follows that ∣∣∣∣f ′′(a)

f ′(a)

∣∣∣∣ψ(|a|)(1− |a|2) ≤ 6, a ∈ D.

Thus (i) implies (ii).
Suppose that the analytic function f ′′/f ′ satisfies

sup
z∈D

∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣ψ(|z|)(1− |z|2) = M <∞.

Define ρ =
(
|z| + ψ(|z|)

)
/
(
1 + |z|ψ(|z|)

)
∈ (|z|, 1). A standard application of

Cauchy’s integral formula shows that∣∣∣∣∣
(
f ′′

f ′

)′
(z)

∣∣∣∣∣ ≤ M
(
ρ, f

′′

f ′

)
ρ− |z|

, |z| < ρ. (3.30)

Now∣∣∣∣∣
(
f ′′

f ′

)′
(z)

∣∣∣∣∣ (ψ(|z|)(1− |z|2)
)2 ≤M (

ρ,
f ′′

f ′

)
ψ(ρ)(1−ρ2)

(
ψ(|z|)(1− |z|2)

)2
ψ(ρ)(1− ρ2)(ρ− |z|)

,

where (
ψ(|z|)(1− |z|2)

)2
ψ(ρ)(1− ρ2)(ρ− |z|)

=
ψ(|z|)

(
1 + ψ(|z|)|z|

)3
ψ(ρ)(1− ψ(|z|)2)

≤ 8K

1− ψ(0)
.

It follows that

|Sf (z)|
(
ψ(|z|)(1− |z|2)

)2 ≤ ∣∣∣∣∣
(
f ′′

f ′

)′
(z)

∣∣∣∣∣ (ψ(|z|)(1− |z|2)
)2

+
1

2

(∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣ψ(|z|)(1− |z|2)

)2

≤ 8KM

1− ψ(0)
+
M2

2

for all z ∈ D, and thus (ii) implies (iii).
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The following example explores Example 13 in terms of uniform local uni-
valence.

Example 23. Consider the locally univalent analytic function

f =
f1 − f2

f1
= 1− exp

(
−2i

(1− z)β

)
, β > 0,

induced by the linearly independent solutions f1 and f2 in (3.8) of the differential
equation in Example 13. Now

f ′′(z)

f ′(z)
=

−2iβ

(1− z)1+β
+

1 + β

1− z
and Sf (z) = 2A(z) =

2β2

(1− z)2+2β
+

1− β2

2(1− z)2
,

where A is the coefficient function in (3.9). Clearly, conditions (ii) and (iii)
in Theorem 22 are satisfied for ψ(r) = 2−1(1 − r)β . We conclude that f is
ψ-uniformly locally univalent.

4. Complex plane

In this section, we consider the oscillation of solutions of

f ′′ +A(z)f = 0 (4.1)

assuming that the coefficient A is entire. Since some non-trivial solutions of
(4.1) with a constant coefficient A 6≡ 0 have infinitely many zeros, no restriction
for the growth of A, other than A ≡ 0, imply finite oscillation for all non-trivial
solutions. In fact, if A 6≡ 0, then Lemma 24 below shows that (4.1) possesses a
non-trivial solution f such that µ(f) ≥ 1, where

µ(f) = inf

{
β > 0 :

∞∑
n=1

|zn|−β <∞

}
denotes the exponent of convergence of the zeros {zn} of f . Although the
analogy of Nehari’s result reduces to the trivial case A ≡ 0, differential equation
(4.1) can be disconjugate in some unbounded subsets of C. For example, if there
exists an unbounded quasidisk, in where the coefficient A is sufficiently small,
then each non-trivial solution f of (4.1) vanishes at most once there [29].

Lemma 24. Let A be entire. If every non-trivial solution f of (4.1) satisfies
µ(f) < 1, then A ≡ 0.

Proof. Let f1 and f2 be linearly independent solutions of (4.1), and define
h = f1/f2. By Nevanlinna’s second fundamental theorem, we have

T (r, h) ≤ N(r, h) +N(r, 1/h) +N
(
r, 1/(h− 1)

)
+ S(r, h) (4.2)

outside an exceptional set E of finite linear measure. Now [6, Theorem 2.5.8]
implies that there exists ε > 0 such that T (r, h) = O(r1−ε) for all r ∈ [0,∞)\E,
and hence for all r sufficiently large [32, Lemma 1.1.1]. By applying standard
logarithmic derivative estimates [16, Corollary 2] to 2A = Sh, we conclude that
A ≡ 0.
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4.1. Radial and non-radial weights

The following theorem gives an estimate for the separation of zeros in terms
of the growth of coefficient, and vice versa.

Theorem 25. Let A be entire, R ∈ [0,∞), and let Ψ : [R,∞) → (0,∞) be a
non-increasing function such that

K = sup
R?≤r<∞

Ψ(r)

Ψ
(
r + Ψ(r)

) <∞, (4.3)

where

R? =

{
R+ Ψ(R), if 0 < R <∞,
0, if R = 0.

(4.4)

(i) If the coefficient A satisfies

|A(z)|Ψ(|z|)2 ≤M <∞, R ≤ |z| <∞, (4.5)

then the Euclidean distance between any distinct zeros z1 and z2 of any
non-trivial solution of (4.1), for which the Euclidean mid-point |ta(z1, z2)| ≥
R?, satisfies

|z1 − z2| ≥
2Ψ
(
|ta(z1, z2)|

)
max{K

√
M, 1}

. (4.6)

(ii) Conversely, if (4.6) is satisfied for all distinct zeros z1 and z2 of every non-
trivial solution of (4.1), for which |ta(z1, z2)| ≥ R, then the coefficient A
satisfies

|A(z)|Ψ(|z|)2 ≤ 3K2 max{K2M, 1}, |z| ≥ R?. (4.7)

Proof. (i) Let {f1, f2} be a solution base of (4.1), and set h = f1/f2 so that
Sh = 2A. For a ∈ C, define Φa(z) = a+Ψ(|a|)rz, where r = min

{
(K
√
M)−1, 1

}
,

and consider the function ga = h ◦Φa in the unit disc D. If |a| ≥ R?, where R?

is given by (4.4), then |Φa(z)| ≥ R, and hence the assumption (4.5) yields

|Sga(z)|(1− |z|2)2 =
∣∣Sh(Φa(z)

)∣∣|Φ′a(z)|2(1− |z|2)2 ≤ 2M

(
Ψ(|a|)

Ψ
(
|Φa(z)|

))2

r2

≤ 2M

(
Ψ(|a|)

Ψ
(
|a|+ Ψ(|a|)

))2

r2 ≤ 2MK2r2 ≤ 2

for all z ∈ D. Therefore ga is univalent in D for any |a| ≥ R? by Nehari’s
univalence criterion [34, Theorem 1]. Hence h = f1/f2 is univalent in each
Euclidean disc D

(
a,Ψ(|a|)r

)
, |a| ≥ R?, and consequently, condition (4.6) is

true for any distinct zeros z1, z2 ∈ C of any non-trivial solution of (4.1), for
which |ta(z1, z2)| ≥ R?.
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(ii) Assume that (4.6) holds for all distinct zeros z1 and z2 of every non-trivial
solution of (4.1), for which |ta(z1, z2)| ≥ R. As in the proof of Theorem 11, we
deduce that each non-trivial solution of (4.1) vanishes at most once in

D(a,Ra), Ra =
Ψ(|a|)

K max{K
√
M, 1}

, |a| ≥ R?,

where R? is given by (4.4). It follows that ga = h ◦Φa, where h is a quotient of
any two linearly independent solutions of (4.1) and Φa(z) = a+Raz, is univalent
in D for all |a| ≥ R?. Now

|Sga(z)|(1− |z|2)2 =
∣∣Sh(Φa(z)

)∣∣|Φ′a(z)|2(1− |z|2)2 ≤ 6, z ∈ D,

by Kraus’ theorem [33], or [34, p. 545]. Since Sh = 2A, by choosing z = 0 we
get

2|A(a)| Ψ(|a|)2

K2 max{K2M, 1}
≤ 6, |a| ≥ R?,

from which (4.7) follows.

We can obtain a zero-separation result similar to Theorem 25(i), without
the condition (4.3), by applying Sturm’s comparison theorem rather than Ne-
hari’s univalence criteria. For example, if A is entire and it satisfies (4.5) for
R = 0, where Ψ : [0,∞) → (0,∞) is non-increasing and continuous, then a
straightforward application of [28, Corollary on p. 579] yields

|z1 − z2| ≥
π√
M

Ψ

(
max{|z1|, |z2|}+

π√
M

Ψ
(

max{|z1|, |z2|}
))

for all distinct zeros z1 and z2 of every non-trivial solution f of (4.1). We may
also apply Sturm’s comparison theorem directly on the Euclidean geodesics
between distinct zeros, and then obtain a slightly different lower bound for the
separation of zeros. In this approach the weight function Ψ is not required to
be continuous. For a similar reasoning, see [7, p. 19].

Conversely, if Ψ : [0,∞)→ (0,∞) is non-increasing, and we assume

|z1 − z2| ≥
2√
M

Ψ
(

max{|z1|, |z2|}
)
, 0 < M <∞,

instead of (4.6), then an argument similar to the proof of Theorem 25(ii) gives

|A(z)|Ψ
(
|z|+ Ψ(|z|)√

M

)2

≤ 3M, z ∈ C.

The advantage of these results, when compared to Theorem 25, is the fact that
the technical condition (4.3) is not needed. However, when (4.3) is satisfied,
then one may use either these results or Theorem 25, and find the most useful
estimate for each purpose by studying the different constants appearing in the
statements and the behavior of the weight function Ψ in the points in question.

The following example illustrates Theorem 25.
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Example 26. The functions f1(z) = exp
(
− (ez+z)/2

)
and f2(z) = exp

(
(ez−

z)/2
)

are non-vanishing linearly independent solutions of (4.1) with an entire

coefficient A(z) = −
(
e2z+1

)
/4, see [4, p. 356]. Moreover, the zeros of αf1+βf2,

where αβ 6= 0, are the points z ∈ C for which exp
(
ez
)

= −α/β. Among these

points we may pick a subsequence zn = log
(

log(−α/β) + i 2πn
)

for n ∈ N,
where log denotes the principal branch of the complex logarithmic. Evidently,
|zn − zn+1| ∼ n−1, as n → ∞. An application of Theorem 25 with Ψ(r) =
exp(−r), for which K = e in (4.3), yields |zn − zn+1| & Ψ

(
|ta(zn, zn+1)|

)
∼

Ψ(log n) = n−1, as n → ∞. We conclude that the estimate resulting from
Theorem 25 is of the correct order of magnitude.

Corresponding to Section 3.2, the proof of Theorem 25 shows that we can
also consider non-radial weights Ψ. Namely, if there are constants C > 0 and
R ≥ 0 such that the function Ψ : C→ (0, C) satisfies

K = sup
a∈C

sup
z∈D

Ψ(a)

Ψ
(
a+ Ψ(a)z

) <∞, (4.8)

and |A(z)|Ψ(z)2 ≤M for R ≤ |z| <∞, then we deduce (4.6) with ta(z1, z2) in
place of |ta(z1, z2)| for any distinct zeros z1 and z2 of any non-trivial solution
of (4.1), for which |ta(z1, z2)| ≥ R?, where R? is given by (4.4). An observation
corresponding to above applies for the converse statement.

4.2. Discussion on the weight functions

Weight functions are a subject of more detailed inspection in Section 2.3;
here we merely point out a few differences. If Ψ : [0,∞) → (0,∞) is non-
increasing, differentiable and convex, then

Ψ(r)

Ψ
(
r + Ψ(r)

) ≤ Ψ(r)

Ψ(r) + Ψ′(r)Ψ(r)
=

1

1 + Ψ′(r)

for r large enough, and it follows that Ψ satisfies (4.3). However, the only non-
increasing and concave mappings from [0,∞) to (0,∞) are constants. It is also
worth noticing that

Ψ
(
r + Ψ(r)

)
Ψ(r)

− 1 =
Ψ
(
r + Ψ(r)

)
−Ψ(r)(

r + Ψ(r)
)
− r

,

and hence (4.3) holds, if we assume the Lipschitz condition

sup
0<s<t<∞

∣∣∣∣Ψ(s)−Ψ(t)

s− t

∣∣∣∣ < 1.

We next construct a non-increasing function Ψ : [0,∞)→ (0,∞), for which
(4.3) fails. The following construction only defines Ψ at a point sequence tending
to infinity; Ψ can be made continuous or differentiable on [0,∞) if needed.
Define rk = 2k for n ∈ N, and define Ψ(r1) = 1. Let εk ∈ (0, 1) be a decreasing
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sequence such that εk → 0+, as k → ∞. We define values yk, Ψ(yk) and
Ψ(rk+1) inductively by yk = rk+Ψ(rk), Ψ(yk) = εkΨ(rk) and Ψ(rk+1) = Ψ(yk),
respectively. Since Ψ is non-increasing and {rk} is increasing, we deduce that
Ψ(rk) < rk, and further, rk < yk < 2rk = rk+1 for all k ∈ N. Moreover,

Ψ(rk)

Ψ
(
rk + Ψ(rk)

) =
1

εk
→∞, k →∞.

We have the following elementary analogue of Theorem 10: Let Ψ : [R,∞)→
(0,∞) be a continuous and non-increasing function, and let k > 1. Then there
exists a constant C > 0, depending on k, such that Ψ(x) < kΨ

(
x + Ψ(x)

)
outside a set E ⊂ [R,∞) of x-values satisfying

∫
E
dx ≤ C <∞.

4.3. Observations on Theorem 25

If A is entire, and Ψ : [0,∞)→ (0,∞) is a non-increasing function satisfying
(4.3), then Theorem 25 implies that

sup
z∈C
|A(z)|Ψ(|z|)2 <∞ ⇐⇒ inf

(zj ,zk)∈Γ0(A)

|zj − zk|
Ψ
(
|ta(zj , zk)|

) > 0, (4.9)

where Γr(A) for r ∈ [0,∞) is the set of pairs (z1, z2) such that z1, z2 ∈ C
are distinct zeros of the same non-trivial solution of (4.1), and |ta(z1, z2)| ≥ r.
In particular, if A is entire, supz∈C |A(z)|Ψ(|z|)2 is finite, and there exists a
solution f of (4.1), whose zero-sequence has a subsequence {zn}, which satisfies
|zn+1 − zn|/Ψ

(
|ta(zn, zn+1)|

)
→ 0+, as n→∞, then f ≡ 0.

As in the unit disc case, if we assume that Ψ : [0,∞) → (0,∞) is a non-
increasing function such that limr→∞Ψ(r) = 0, and there exists a constant
t ∈ (0,∞) for which

sup
r∈[0,∞)

Ψ(r)

Ψ(r + t)
<∞, (4.10)

then by modifying the proof of Theorem 25, we conclude

lim
|z|→∞

|A(z)|Ψ(|z|)2 = 0 ⇐⇒ lim
r→∞

inf
(zj ,zk)∈Γr(A)

|zj − zk|
Ψ
(
|ta(zj , zk)|

) =∞.

For example, if Ψ(r) = (1+r)−α for α > 0, then (4.10) holds for any t ∈ (0,∞).
Assume that A is entire and (4.1) has a non-trivial solution f which vanishes

at distinct points zn and z?n satisfying |zn−z?n| < εn for all n ∈ N. The following
claims are immediate consequences of Theorem 25:

(i) If 0 < εn < M1 exp
(
−M2|zn|

)
for some M1,M2 > 0, then the infimum

part of (4.9) fails for the weight Ψ(r) = (1 + r)−α for all α > 0, and hence
A is not a polynomial.

(ii) If 0 < εn < M1 exp
(
−M2 exp(M3|zn|)

)
for some M1,M2,M3 > 0, then

the infimum part of (4.9) fails for the weight Ψ(r) = exp(−rα) for all
α > 0, and hence ρ(A) =∞. Here, as usual,

ρ(g) = lim sup
r→∞

log logM(r, g)

log r
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denotes the order of growth of an entire function g. As a consequence we
get [3, Corollary 1]; for further discussion, see [13, p. 347].

4.4. Polynomial coefficients

The special case Ψ ≡ c > 0 of Theorem 25 along with Liouville’s theorem
yield the following corollary, which can be considered as a plane analogue of
the classical unit disc result by Schwarz [36, Theorems 3 and 4]. Recall that
Schwarz’s result gives a characterization, in terms of the growth of the coeffi-
cient, to the case when the hyperbolic distance between any distinct zeros of
any non-trivial solution is uniformly bounded away from zero.

Corollary 27. Let A be entire. Then the Euclidean distance between all distinct
zeros z1 and z2 every non-trivial solution f of (4.1) is uniformly bounded away
from zero if and only if A is constant.

Note that, if the coefficient A is a constant, then we can solve (4.1). It
follows that the Euclidean distance between any distinct zeros of any non-trivial
solution is uniformly bounded away from zero. An alternative proof of the
converse assertion is presented at the end of Section 4.4. The following result
goes further than Corollary 27.

Corollary 28. Let A be entire. The coefficient A is a polynomial of degree n

if and only if |z1 − z2|
(
1 + |z1 + z2|/2

)n/2
is uniformly bounded away from zero

for all distinct zeros z1, z2 ∈ C of every non-trivial solution of (4.1).

Proof. If A(z) = anz
n + an−1z

n−1 + · · ·+ a1z+ a0 is a polynomial, where the
leading coefficient an 6= 0, then M(r,A) � rn for all sufficiently large r. If we
choose Ψ(r) = (1 + r)−n/2, then

Ψ(r)

Ψ
(
r + Ψ(r)

) =

(
1 +

1

(1 + r)1+n/2

)n/2
≤ 2n/2, 0 ≤ r <∞,

and hence (4.3) holds. Therefore, if A is entire, then the assertion follows from
Theorem 25.

Example 29 below deals with a-points of a quotient of two linearly indepen-
dent solutions of (4.1) with a polynomial coefficient A.

Example 29. If P is a polynomial of degree d > 1, then for any distinct a-
points z(a) and z?(a) of the function

f(z) =

∫ z

0

exp
(
− 2P (ζ)

)
dζ, z ∈ C,

the expression |z(a)−z?(a)|
(
1+ |ta(z(a), z?(a))|

)d−1
is uniformly bounded away

from zero, and further, for each ε > 0 there corresponds a sequence {an} of com-
plex numbers, such that each an has two preimages z(an) and z?(an) under f ,
for which

∣∣ta(z(an), z?(an)
)∣∣ ≥ n for all n ∈ N, and

|z?(an)− z(an)|
(

1 +
∣∣ta(z(ak), z?(an)

)∣∣)d−1−ε
→ 0+, n→∞.

37



This follows from Theorem 25, since g1 = eP and g2 = eP f are linearly inde-
pendent solutions of

g′′ −
(
P ′′(z) +

(
P ′(z)

)2)
g = 0, deg

(
P ′′ + (P ′)2

)
= 2(d− 1), (4.11)

and the a-points of f are exactly the zeros of the solution g2 − ag1 of (4.11).

If A is entire and µ ∈ [1,∞), then A is a polynomial of deg(A) ≤ 2µ−2 if and
only if all non-trivial solutions f of (4.1) satisfy ρ(f) ≤ µ; see [23, Theorem 1.1]
and the original references therein. It is also true that these conditions are
equivalent to the requirement that all non-trivial solutions f of (4.1) satisfy
µ(f) ≤ µ [23, Theorem 1.3]. Note that µ(f) measures the quantity of zeros of
f , but it does not imply any lower bound for the Euclidean distance between
two distinct zeros. Theorem 25 enables us to resolve this matter. Supposing
that A is entire, we define the zero separation exponent for (4.1) to be

ΥDE(A) = inf

{
q > 1 : inf

(zj ,zk)∈Γ0(A)
|zj − zk|

(
1 + |ta(zj , zk)|

)q−1
> 0

}
, (4.12)

with the convention that ΥDE(A) = ∞ if the infimum in (4.12) is zero for all
q > 1.

The following result, which emerges as a corollary of Theorem 25, shows
that for solutions f of (4.1), the quantities ρ(f), µ(f) and ΥDE(A) are closely
related. Note in Corollary 30 that not all values µ ∈ [1,∞) are permitted, since
the degree of the polynomial coefficient must be an integer. In particular, if any
of the following equivalent conditions is true for some µ ∈ [1,∞), then it follows
that all the other conditions are valid, and further, µ belongs to a certain finite
set of permitted rational numbers.

Corollary 30. Let A be entire and µ ∈ [1,∞). Then, the following assertions
are equivalent:

(i) The coefficient A is a polynomial of deg(A) = 2µ− 2;

(ii) All non-trivial solutions f of (4.1) satisfy ρ(f) = µ;

(iii) There is a solution f of (4.1) such that ρ(f) = µ;

(iv) All non-trivial solutions f of (4.1) satisfy µ(f) ≤ µ, and there exists a
solution f for which µ(f) = µ;

(v) ΥDE(A) = µ.

Proof. By combining [15, Theorem 5], [23, Corollary 1.4], [32, Proposition 5.1],
it is easy to see that conditions (i), (ii) and (iv) are equivalent. To conclude that
condition (iii) can be added to this list of equivalent conditions, it is suffices to
prove that (iii) ⇒ (i), since (ii) ⇒ (iii) is trivial. Assume that (iii) holds. Now
standard estimates for the logarithmic derivatives [16, Corollary 3] show that A
is a polynomial, and (i) follows by [32, Proposition 5.1].
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We complete the proof by showing that (i) and (v) are equivalent. Case
µ = 1 is evident by Corollary 27. Suppose that µ > 1, and let ε > 0 be such
that µ− ε/2 > 1. If (v) holds, then

inf
(zj ,zk)∈Γ0(A)

|zj − zk|
Ψ(|ta(zj , zk)|)

> 0 for Ψ(r) = (1 + r)1−µ−ε/2,

and

inf
(zj ,zk)∈Γ0(A)

|zj − zk|
Ψ(|ta(zj , zk)|)

= 0 for Ψ(r) = (1 + r)1−µ+ε/2.

In the former case we have supz∈C |A(z)|Ψ(|z|)2 < ∞ by (4.9), and hence the
entire function A is a polynomial with deg(A) ≤ 2(µ−1)+ε. In the latter case we
have supz∈C |A(z)|Ψ(|z|)2 =∞ by (4.9), and hence deg(A) ≥ 2(µ− 1)− ε. This
proves (v) ⇒ (i). Conversely, if (i) holds, then ΥDE(A) ≤ µ by Corollary 28,
while (4.9) yields ΥDE(A) ≥ µ− ε/2. Thus (i) ⇒ (v).

If A 6≡ 0 is entire, then Corollary 30 shows that supf µ(f) = ΥDE(A), where
the supremum is taken over all non-trivial solutions f of (4.1). Alongside with
ΥDE(A), which can be considered as a property of the differential equation (4.1)
itself, we define another property measuring the separation of zeros of individual
functions. If {zn} is the zero-sequence of an entire function f , then we define
the zero separation exponent for f to be

Υ(f) = inf

{
q > 1 : inf

j 6=k
|zj − zk|

(
1 + |ta(zj , zk)|

)q−1
> 0

}
, (4.13)

and set Υ(f) = ∞, if the infimum in (4.13) is zero for all q > 1. Further, set
Υ(f) = 1 if f has only finitely many zeros in C, or if f has multiple zeros.

Evidently Υ(f) ≤ ΥDE(A) for all solutions f of (4.1), and the strict inequal-
ity is possible, for example, for non-vanishing solutions. As in the corresponding
case of the unit disc, Υ(f) . µ(f) is not true even for individual solutions of
(4.1) with an entire coefficient, see [3, Corollary 1]. The proof of the sharp
inequality µ(f) ≤ 2Υ(f) is similar to the proof of Theorem 33 below, and hence
is omitted.

We proceed to consider the geometric distribution of zeros of solutions of
(4.1) with a polynomial coefficient A. According to [28, Chapter 7] all but
finitely many zeros of any non-trivial solution of (4.1) lie in critical sectors
constructed over symmetrically spaced radii emanating from the origin, see also
[15, Lemma 2]. The number of critical sectors is deg(A) + 2.

Let A be a polynomial of deg(A) = n, and let f by any non-trivial solution of
(4.1). It follows that f is an entire function of order of growth ρ(f) = (n+2)/2,
see Corollary 30. Let us consider the growth of |f(z)| in different parts of the
complex plane, as |z| → ∞. We expect |f(z)| to be small when z is close to the
zeros of f that are located in the critical sectors, with finitely many possible
exceptions. However, either |f(z)| → ∞ or |f(z)| → 0, as z → ∞, in between
two consecutive critical sectors, see [18, Theorem E]. By Phragmén-Lindelöf
theorem there must exist at least one pair of consecutive critical sectors such
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that |f(z)| → ∞, as z → ∞, in between them, for otherwise f would be a
constant. Define D =

{
z ∈ C : |f(z)| ≥ 1

}
. Clearly all zeros of f belong to the

complement of D. Since ρ(f) = (n+ 2)/2, it follows from [37, Theorem 1] that
the two-dimensional upper density of D satisfies

lim sup
r→∞

m
(
D ∩D(0, r)

)
πr2

≥ 1

n+ 2
. (4.14)

Since there are n + 2 symmetrical critical sectors, the lower bound in (4.14)
corresponds to the portion of one sectorial domain between two consecutive
critical sectors.

For a slightly more precise analysis, let r θ(r) be the length of the longest arc
of |z| = r contained in D. Then θ(r) is the angle in which this arc is seen from
the origin. For a fixed ε ∈ (0, 2), let F =

{
r ∈ [1,∞) : θ(r) ≤ (2− ε)π/(n+ 2)

}
.

Such angular restriction again corresponds to a sectorial domain between two
consecutive critical sectors. Now [1, Theorem 3] shows that

n+ 2

2
≥ lim sup

r→∞

π

log r

∫ r

1

dt

t θ(t)
≥ n+ 2

2− ε
lim sup
r→∞

∫
F∩[1,r]

dt
t

log r
.

This shows that the upper logarithmic density logdens(F ) ≤ (2− ε)/2 < 1.
The following theorem, whose proof is an easy modification of that of The-

orem 25, allows us to supplement the existing knowledge on zero distribution
of solutions of (4.1) with polynomial coefficients. If θ ∈ [0, 2π) and 0 < s < R,
then

Ωθ(R, s) =
{
z ∈ C : |z − reiθ| < s for some r > 0

}
\D(0, R)

defines an infinite half-strip domain of width 2s in the complex plane.

Theorem 31. Let A be entire, R ∈ (0,∞) and Ψ : [R,∞) → (0,∞) be a
non-increasing function such that (4.3) holds, where R? = R+ Ψ(R).

(i) If the coefficient A satisfies |A(z)|Ψ(|z|)2 ≤M <∞ for all z ∈ Ωθ(R, s),
where θ ∈ [0, 2π) and s ∈ (Ψ(R), R), then the Euclidean distance between
any distinct zeros z1 and z2 of any non-trivial solution of (4.1), for which
the Euclidean mid-point ta(z1, z2) ∈ Ωθ

(
R + Ψ(R), s − Ψ(R)

)
, satisfies

(4.6).

(ii) Conversely, if (4.6) is satisfied for all distinct zeros z1 and z2 of every
non-trivial solution of (4.1), for which ta(z1, z2) ∈ Ωθ(R, s), where s ∈
(Ψ(R), R), then the coefficient A satisfies

|A(z)|Ψ(|z|)2 ≤ 3K2 max{K2M, 1}

for all z ∈ Ωθ
(
R+ Ψ(R), s−Ψ(R)

)
.

The following corollary indicates that, although almost all zeros of individual
non-trivial solutions of (4.1) lie in a small portion of the complex plane, one finds
infinitely many pairs of zeros with minimal separation in each radial direction,
provided that all zeros of all non-trivial solutions of (4.1) are taken into account.
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Corollary 32. Let A be a polynomial of deg(A) = d. Then, each Ωθ(1, s),
where θ ∈ [0, 2π) and s ∈ (0, 1), contains infinitely many pairs of zeros (zn, z

?
n)

of non-trivial solutions fn of (4.1), such that supn∈N |zn− z?n|n(d−ε)/2 <∞ for
all ε > 0.

Proof. Let θ ∈ [0, 2π) and s ∈ (0, 1) be fixed, and define Ψ(r) = (1+r)−(d−ε)/2,
where ε > 0 is sufficiently small. Take N ∈ N large enough such that Ψ(n) < s/2
for all natural numbers n > N .

Suppose that there exists a natural number n > N such that all distinct zeros
z and z? of every non-trivial solution of (4.1), for which ta(z, z?) ∈ Ωθ(n, s/2),
satisfy (4.6) with z1 = z and z2 = z?. Theorem 31(ii) now implies that expres-
sion |A(z)|Ψ(|z|)2 is uniformly bounded for all z ∈ Ωθ

(
n + Ψ(n), s/2 − Ψ(n)

)
.

This is clearly a contradiction, since regardless of the argument

|A(z)|Ψ(|z|)2 � |z|d

(1 + |z|)d−ε
� |z|ε →∞, |z| → ∞.

We conclude that, for each natural number n > N there corresponds a non-
trivial solution fn of (4.1), such that fn has two distinct zeros zn, z

?
n ∈ C, for

which ta(zn, z
?
n) ∈ Ωθ(n, s/2) and

|zn − z?n| ≤
1(

1 + |ta(zn, z?n)|
)(d−ε)/2 ≤ C

(1 + n)(d−ε)/2 ,

where C > 0 is a constant independent of n. Assertion follows, since evidently
zn, z

?
n ∈ Ωθ(1, s) for all sufficiently large n ∈ N.

The following theorem concerns the separation of zeros of individual solu-
tions of (4.1) with a polynomial coefficient.

Theorem 33. Let A be a polynomial of deg(A) = d.

(i) If 0 ≤ d ≤ 2, then all non-trivial solutions f of (4.1) satisfy Υ(f) ≤
(d+ 2)/2, and there exists a solution f such that Υ(f) = (d+ 2)/2.

(ii) If d > 2, then all non-trivial solutions f of (4.1) satisfy Υ(f) ≤ (d+2)/2,
and there exists a solution f such that Υ(f) ≥ (d+ 2)/4 + 1.

Proof. The case d = 0 follows from Corollary 27. Since all non-trivial solutions
f satisfy Υ(f) ≤ ΥDE(A) = (d + 2)/2 for any d by Corollary 30, it suffices to
find a solution f for which Υ(f) has the desired lower bound depending on d.

Let now d ≥ 1. By Corollary 30 there exists a solution f such that µ(f) =
(d+ 2)/2. In particular, f has infinitely many zeros. By [25, Theorem 1] there
are d+ 2 modified half-strips in the complex plane such that these sets contain
all but finitely many zeros of f . Moreover, the widths of these modified half-
strips tend to zero at a rate depending on d = deg(A), when approaching the
infinity. It follows that at least one of these modified half-strips, say Ω, contains
a sequence {zn} of zeros of f such that convergence exponent of {zn} equals to

41



(d + 2)/2 = µ(f). Without loss of generality, we may suppose that Ω belongs
to the right half-plane and is symmetric with respect to the positive real axis.
Denote

Rj :=
{
z ∈ C : j ≤ Re(z) < j + 1

}
, j ∈ N,

and let ε > 0. By (4.13) there exists a constant c > 0 such that, if Kj =
cj−(Υ(f)−1+ε/4), then D(zn,Kj) ∩D(zm,Kj) = ∅ for all distinct zeros zn, zm ∈
Ω ∩Rj and j large enough.

If d = 1, then [25, Theorem 1] yields

area

( ⋃
z∈Ω∩Rj

D(z,Kj)

)
. 2

∫ j+1+Kj

j−Kj

(
x−1/2 +Kj

)
dx . max

{
Kj ,

1

j1/2

}
.

Let Nj denote the number of zeros of f belonging to Ω ∩Rj , so that

Nj .
1

πK2
j

area

( ⋃
z∈Ω∩Rj

D(z,Kj)

)
. max

{
1

Kj
,

1

j1/2K2
j

}
. (4.15)

If the maximum in (4.15) is equal to K−1
j , then

∞∑
n=1

1

|zn|Υ(f)+ε
.
∞∑
j=1

∑
zn∈Rj

1

|zn|Υ(f)+ε
.
∞∑
j=1

Nj
jΥ(f)+ε

<∞,

and hence 3/2 = µ(f) ≤ Υ(f), where the first equality follows from Corollary 30.
If the maximum in (4.15) is equal to j−1/2K−2

j , then

∞∑
n=1

1

|zn|2Υ(f)−3/2+ε
.
∞∑
j=1

∑
zn∈Rj

1

|zn|2Υ(f)−3/2+ε
.
∞∑
j=1

Nj
j2Υ(f)−3/2+ε

<∞,

which implies µ(f) ≤ 2Υ(f)−3/2, and hence Υ(f) ≥ 3/2. The assertion follows
for d = 1.

If d = 2, then [25, Theorem 1] yields

area

( ⋃
z∈Ω∩Rj

D(z,Kj)

)
. 2

∫ j+1+Kj

j−Kj

(
log x

x
+Kj

)
dx . max

{
Kj ,

log j

j

}
,

while if d > 2, then

area

( ⋃
z∈Ω∩Rj

D(z,Kj)

)
. 2

∫ j+1+Kj

j−Kj

(
x−1 +Kj

)
dx . max

{
Kj ,

1

j

}
.

We may follow the reasoning in the case d = 1 to obtain (d + 2)/2 = µ(f) ≤
2Υ(f)− 2, from which the assertion follows.
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The example below concerns the Airy differential equation, whose solutions
arise in many practical applications. For a generalization of the Airy integral,
see [17].

Example 34. The classical Airy differential equation f ′′ − zf = 0 possesses a
special contour integral solution called the Airy integral Ai. Let {zn} denote its
zero-sequence. It is known that zeros zn are real and negative for all n ∈ N [35,
p. 415], and they satisfy [27, Theorem 2] the asymptotic estimate

zn ∼ −
(

3π

8

(
4n− 1

))2/3

, n→∞. (4.16)

Theorem 25 with Ψ(r) = (1 + r)−1/2 proves that all distinct zeros z1 and z2 of

Airy integral satisfy the separation condition |z1 − z2| ≥ 2
(
2 + |z1 + z2|

)−1/2
.

This estimate is of the correct order of magnitude, since

|zn − zn+1| ∼
(

2π2

3n

)1/3

,
2√

2 + |zn + zn+1|
∼

(
4
√

2

3πn

)1/3

, n→∞,

by (4.16). Note also that Υ(Ai) = 3/2 by the proof of Theorem 33.

We close this section by giving an alternative proof of the converse assertion
of Corollary 27. Suppose that the zeros of every non-trivial solution f of (4.1)
are separated in terms of the Euclidean metric; that is, all zeros are simple, and
Υ(f) = 1 for all non-trivial solutions f of (4.1). Then, for any fixed non-trivial
solution f there is a constant δ > 0 such that for any z0 ∈ C the Euclidean disc
D(z0, δ) contains at most one zero of f . A simple geometric observation reveals
that n(r, f, 0) = O(r2) and N(r, f, 0) = O(r2), as r → ∞, for all non-trivial
solutions f of (4.1).

Let f1 and f2 be linearly independent solutions of (4.1), and define h =
f1/f2. By Nevanlinna’s second fundamental theorem (4.2) holds outside an ex-
ceptional set E of finite linear measure. By the discussion above, T (r, f) = O(r2)
for all r ∈ [0,∞)\E, and hence for all r sufficiently large [32, Lemma 1.1.1]. By
applying standard logarithmic derivative estimates [16, Corollary 2] to 2A = Sh,
we conclude that A is a polynomial of deg(A) ≤ 2. This is in contradiction with
Theorem 33, unless A is a constant function.

4.5. Uniform local univalence

Theorem 25 gives rise to certain natural subclasses of locally univalent func-
tions. Functions f satisfying (i) in Theorem 35 below are called as Ψ-uniformly
locally univalent functions in C.

Theorem 35. Let f be a locally univalent entire function, and let Ψ : [0,∞)→
(0,∞) be a non-increasing function such that (4.3) is satisfied for R? = 0. Then
the following assertions are equivalent:
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(i) There exists δ > 0 such that f is univalent in each disc D (a,Ψ(|a|)δ) for
all a ∈ C;

(ii) sup
z∈C

∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣Ψ(|z|) <∞;

(iii) sup
z∈C
|Sf (z)|Ψ(|z|)2 <∞.

Proof. The proof of Theorem 25 shows that (iii) implies (i). Moreover, if (i) is
satisfied, then the function ga = f ◦Φa, where Φa(z) = a+ Ψ(|a|)δz is univalent
in D for all a ∈ C. Take ha(z) = (ga(z) − ga(0))/g′a(0) so that ha(0) = 0 and
h′a(0) = 1. Then ∣∣∣∣f ′′(a)

f ′(a)

∣∣∣∣Ψ(|a|)δ =

∣∣∣∣g′′a(0)

g′a(0)

∣∣∣∣ = |h′′a(0)| ≤ 4,

and (ii) follows.
Assume that (ii) is satisfied so that

sup
z∈C

∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣Ψ(|z|) = M <∞.

Let ρ = |z| + Ψ(|z|). An application of the Cauchy formula gives (3.30), and
hence ∣∣∣∣∣

(
f ′′

f ′

)′
(z)

∣∣∣∣∣Ψ(|z|)2 ≤ KM

(
ρ,
f ′′

f ′

)
Ψ(ρ)

Ψ(|z|)
ρ− |z|

≤ KM, z ∈ C.

It follows that

|Sf (z)|Ψ(|z|)2 ≤

∣∣∣∣∣
(
f ′′

f ′

)′
(z)

∣∣∣∣∣Ψ(|z|)2 +
1

2

(∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣Ψ(|z|)
)2

≤ KM +
1

2
M2

for all z ∈ C, and thus (iii) is satisfied.

5. Concluding remarks

The results reported in this paper fall into two distinct categories. In Sec-
tion 2 we compare the separation of zeros of non-trivial solutions of

f ′′ +Af = 0 (5.1)

to the growth of the continuous real-valued coefficient A on a real interval,
whereas in Sections 3 and 4 we discuss the corresponding concepts in a complex
domain. Even though the approach we take applies in both instances, there are
some profound differences between the real and complex cases no matter how
similar they may seem. In the complex case, it is well-known that the growth of
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the coefficient, the growth of solutions and the quantity of zeros of solutions are
closely related. By the results obtained, it is justified to say that the separation
of zeros of all non-trivial solutions gives the fourth quantity (ΛDE(A) in the disc
and ΥDE(A) in the plane), which is firmly ensconced among the other three.
However, these ties are not carried over into the real case, as the following
facts show. First, by Examples 4 and 7, an arbitrarily fast growing coefficient
may permit all solutions to be bounded. Second, an elementary corollary [5,
p. 48] of Sturm’s comparison theorem states that, if A is non-positive, then
(5.1) is disconjugate. We derive the same conclusion whenever the integral of
A is sufficiently small [19, Corollary 5, p. 346]. Therefore the absolute value of
the coefficient may grow arbitrarily fast while all non-trivial solutions vanish at
most once. Third, Sturm’s theorem on interlacing zeros shows that, if one non-
trivial solution has infinitely many zeros, then the same is true for all solutions.
In particular, if one non-trivial solution has two zeros, then there are no zero-
free solutions, to say nothing of zero-free solutions bases. In contrast to this,
zero-free solution bases are possible in the complex case [4, 24]. For classical
results on the oscillation regarding the real case, see, for example, [40] and the
references therein. In conclusion, the connections between the growth of the
coefficient, the growth of solutions, and the zero separation of solutions of (5.1)
in the real case are different from those in the complex case.
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